Patrocinador1

Geología





Acantilados de Normandía
Compuestos por el mismo tipo de caliza que los acantilados blancos de Dover, los acantilados de Normandía son un rasgo distintivo de la costa francesa. Varias evidencias geológicas sugieren que un puente de tierra conectaba las dos orillas del canal durante el cretácico. Los arcos mostrados son resultado de la acción del agua sobre secciones más blandas de la roca.

Geología (del griego, geo, ‘tierra’ y logos, ‘conocimiento’, por lo tanto, tratado o conocimiento de la Tierra), campo de la ciencia que se interesa por el origen del planeta Tierra, su historia, su forma, la materia que lo configura y los procesos que actúan o han actuado sobre él. Es una de las muchas materias relacionadas como ciencias de la Tierra, o geociencias, y los geólogos son científicos de la Tierra que estudian las rocas y los materiales derivados que forman la parte externa de la Tierra. Para comprender estos cuerpos, se sirven de conocimientos de otros campos, como la física, la química y la biología. De esta forma, temas geológicos como la geoquímica, la geofísica, la geocronología (que usa métodos de datación) y la paleontología, ahora disciplinas importantes por derecho propio, incorporan otras ciencias, y esto permite a los geólogos comprender mejor el funcionamiento de los procesos terrestres a lo largo del tiempo.
Aunque cada ciencia de la Tierra tiene su enfoque particular, todas suelen superponerse con la geología. De esta forma, el estudio del agua de la Tierra en relación con los procesos geológicos requiere conocimientos de hidrología y de oceanografía, mientras que la medición de la superficie terrestre utiliza la cartografía (mapas) y la geodesia (topografía). El estudio de cuerpos extraterrestres, en especial de la Luna, de Marte y de Venus, también aporta pistas sobre el origen de la Tierra. Estos estudios, limitados en un primer momento a las observaciones telescópicas, recibieron un gran impulso con la exploración del espacio (véase Astronáutica) que se inició en la década de 1960.

Mapa del relieve
Los mapas del relieve son modelos tridimensionales del terreno de un área. Se usan mucho en ingeniería o con fines militares. Sus colores y escala indican características geográficas en vez de simples fronteras políticas. Este mapa muestra una zona de Alaska y del noroeste de Canadá.

Como ciencia mayor, la geología no sólo implica el estudio de la superficie terrestre, también se interesa por el interior del planeta. Este conocimiento es de interés científico básico y está al servicio de la humanidad. De esta forma, la geología aplicada se centra en la búsqueda de minerales útiles en el interior de la tierra, la identificación de entornos estables, en términos geológicos, para las construcciones humanas y la predicción de desastres naturales asociados con las fuerzas geodinámicas que se describen más adelante.
2

HISTORIA DEL PENSAMIENTO GEOLÓGICO
Torre del Diablo
La Torre del Diablo, columna aislada de basalto situada en Wyoming, EEUU, muestra rasgos característicos de enfriamiento en columna. La columna de basalto se forma cuando la lava se enfría y las grietas superficiales poligonales se propagan por la roca. Tienen formas similares a las grietas del lodo. Según las leyendas de los indígenas americanos, las líneas verticales, o grietas, eran marcas dejadas por las garras de un oso gigante.

Los pueblos antiguos consideraban muchas características y procesos geológicos como obra de los dioses. Observaban el entorno natural con miedo y admiración, como algo peligroso y misterioso. Así, los antiguos sumerios, babilonios y otros pueblos, pese a realizar descubrimientos notables en matemáticas y astronomía, erraban en sus investigaciones geológicas al personificar los procesos geológicos. Las leyendas irlandesas, por ejemplo, sugerían que los gigantes eran responsables de algunos fenómenos naturales, como la formación por meteorización de las columnas basálticas conocidas ahora como la Calzada de los Gigantes. Estos mitos también eran corrientes en las civilizaciones del Nuevo Mundo; por ejemplo, los pueblos indígenas americanos pensaban que los surcos en los flancos de lo que se llegó a conocer como Torre del Diablo en Wyoming eran las huellas de las garras de un oso gigante.
2.1

Desde la antigüedad hasta la edad media
Uluru, Australia
Uluru, también llamado Ayers Rock, está considerado como uno de los monolitos, o masa de roca individual, más grandes del mundo. Tiene una longitud de unos 2,4 km y una altura de 348 metros. Las paredes de muchas de sus cuevas están cubiertas por pinturas realizadas hace miles de años por artistas aborígenes.

De modo similar, en la Grecia y Roma antiguas, muchos de los dioses estaban identificados con procesos geológicos. Por ejemplo, las erupciones volcánicas de Sicilia eran atribuidas a Vulcano. Se atribuye al filósofo griego Tales de Mileto, del siglo VI a.C., la primera ruptura con la mitología tradicional. Consideraba los fenómenos geológicos como sucesos naturales y ordenados que pueden ser estudiados a la luz de la razón y no como intervenciones sobrenaturales. El filósofo griego Demócrito hizo progresar esta filosofía con la teoría según la cual toda la materia se componía de átomos. Basándose en esta teoría, ofreció explicaciones racionales de todo tipo de procesos geológicos: los terremotos, las erupciones volcánicas, el ciclo del agua, la erosión y la sedimentación. Sus enseñanzas fueron expuestas por el poeta romano Lucrecio en su poema De la naturaleza de las cosas. Aristóteles, uno de los filósofos de la naturaleza más influyentes de todos los tiempos, descubrió en el siglo IV a.C. que las conchas fósiles encajadas en estratos de roca sedimentaria eran similares a las encontradas en las playas. Con esta observación supuso que las posiciones relativas de la tierra y del mar habían fluctuado en el pasado y comprendió que estos cambios requerirían grandes periodos de tiempo. Teofrasto, discípulo de Aristóteles, contribuyó al pensamiento geológico escribiendo el primer libro de mineralogía. Se llamaba De las piedras, y fue la base de la mayoría de las mineralogías de la edad media y de épocas posteriores.
2.2

El renacimiento
Georgius Agricola
Georg Bauer (1494-1555), más conocido por su nombre latinizado de Georgius Agricola, es considerado el fundador de la mineralogía.

El renacimiento marcó el verdadero inicio del estudio de las ciencias de la Tierra; la gente empezó a observar los procesos geológicos mucho más que los griegos clásicos lo hicieron. Si Leonardo da Vinci no fuera tan conocido como pintor o ingeniero, lo sería como pionero de las ciencias naturales. Se dio cuenta, por ejemplo, de que los paisajes están esculpidos por fenómenos de erosión, y de que las conchas fósiles de las piedras calizas de los Apeninos eran los restos de organismos marinos que habían vivido en el fondo de un mar antiguo que debía de haber cubierto Italia.
Después de Leonardo, el filósofo naturalista francés Bernard Palissy escribió sobre la naturaleza y el estudio científico de los suelos, de las aguas subterráneas y de los fósiles. Los trabajos clásicos sobre minerales de este periodo fueron escritos, sin embargo, por Georgius Agricola, un alemán experto en mineralogía que publicó De re metallica (1556) y De natura fossilium (1546). Agricola recopiló los desarrollos más recientes de geología, mineralogía, minería y metalurgia de su época; sus trabajos fueron traducidos con profusión.
2.3

Siglo XVII
Niels Stensen, un danés —más conocido por la versión latina de su nombre, Nicolaus Steno—, sobresale entre los geocientíficos del siglo XVII. En 1669 demostró que los ángulos interfaciales de los cristales de cuarzo eran constantes, con independencia de la forma y del tamaño de los cristales y que, por extensión, la estructura de otras especies cristalinas también sería constante. Así, al llamar la atención sobre el significado de la forma de los cristales, Steno sentó las bases de la ciencia cristalográfica. Sus observaciones sobre la naturaleza de los estratos de roca le llevaron a formular la ley de la superposición, uno de los principios básicos de la estratigrafía (ver más adelante).
2.4

Siglos XVIII y XIX
Calzada de los Gigantes
Según la leyenda, las columnas de basalto de la Calzada de los Gigantes eran antiguas piedras utilizadas por los gigantes para cruzar el canal entre Irlanda y Escocia. Según evidencias geológicas, los científicos creen que las distintas columnas se formaron durante la fase de enfriamiento y contracción de una corriente de lava.

El pensamiento geológico del siglo XVIII se caracterizó por los debates entre escuelas opuestas. Los plutonistas, que proponían que todas las rocas de la Tierra se solidificaron a partir de una masa fundida y que luego fueron alteradas por otros procesos, se oponían a los neptunistas, cuyo principal exponente fue el geólogo alemán Abraham Gottlob Werner. Werner proponía que la corteza terrestre consistía en una serie de capas derivadas de material sedimentario depositadas en una secuencia regular por un gran océano, como en las capas de una cebolla. Por el contrario, el geólogo escocés James Hutton y los plutonistas, como eran llamados sus seguidores, distinguían las rocas sedimentarias de las intrusivas de origen volcánico.
En 1785, Hutton introdujo el concepto de uniformitarianismo según el cual la historia de la Tierra puede ser interpretada sirviéndose sólo de los procesos geológicos ordinarios conocidos por los observadores modernos. Pensó que muchos de estos procesos, actuando de manera muy lenta, como lo hacen ahora, tardarían millones de años en crear los paisajes actuales. Esta teoría contradecía todas las opiniones teológicas de su tiempo que consideraban que la Tierra tendría unos 4.000 años. Los antagonistas de Hutton, liderados por el naturalista francés Georges Cuvier, creían que cambios bruscos y violentos —catástrofes naturales como inundaciones y seísmos— eran los responsables de las características geológicas terrestres. Por esta razón se les denominaba catastrofistas.
El debate enfervorizado establecido entre estas dos escuelas empezó a declinar hacia el lado de los uniformitarios con la publicación de los Principios de Geología (1830-1833) de Charles Lyell. Nacido en 1797, año de la muerte de Hutton, Lyell se convirtió en la mayor influencia sobre la teoría geológica moderna, atacando con valentía los prejuicios teológicos sobre la edad de la Tierra y rechazando los intentos de interpretación de la geología a la luz de las Escrituras.
En las colonias de América del Norte, el conocido topógrafo, delineante y cartógrafo Lewis Evans había hecho notables contribuciones al saber geológico de América antes del influyente trabajo de Lyell. Para Evans era evidente que la erosión de los ríos y los depósitos fluviales eran procesos que habían ocurrido en el pasado. Además, a lo largo de su trabajo, apareció el concepto de isostasia: la densidad de la corteza terrestre decrece al crecer su espesor.
Junto al trabajo de Lyell, los principales avances de la geología en el siglo XIX fueron las nuevas reacciones contra los conceptos tradicionales, la promoción de la teoría glacial, el inicio de la geomorfología en América, las teorías sobre el crecimiento de las montañas y el desarrollo de la llamada escuela estructuralista (ver más abajo).
2.4.1

Teoría glaciar
La teoría glaciar derivó del trabajo de Lyell, entre otros. Propuesta por primera vez hacia 1840 y aceptada después universalmente, esta teoría enuncia que los depósitos originados por glaciares y planos de hielo se han sucedido en un movimiento lento desde latitudes altas hasta otras más bajas durante el pleistoceno (véase Cuaternario). El naturalista suizo Horace Bénédict de Saussure fue uno de los primeros en creer que los glaciares de los Alpes tenían la fuerza suficiente para mover grandes piedras. El naturalista estadounidense de origen suizo Louis Agassiz interpretó de forma muy precisa el impacto ambiental de este agente erosivo y de transporte, y junto a sus colegas, acumuló diversas evidencias que apoyaron el concepto del avance y del retroceso de los glaciares continentales y montañosos.
2.4.2

Estratigrafía
Columna Estratigráfica
Los fósiles conservados en los estratos de roca ofrecen pistas sobre la historia de la evolución. Esta columna estratigráfica se basa en señales paleontológicas y muestra el orden con que aparecieron los organismos en el paleozoico, rico en fósiles. Cada capa representa un periodo de tiempo particular y muestra los organismos que prosperaron en él. Aunque rara vez se encuentran fósiles según este modelo ideal, suelen estar dispuestos, más o menos, en orden cronológico. En general, los fósiles más antiguos se sitúan en las capas inferiores, y los más recientes en las superiores, así esta disposición puede ayudar en la datación de los especímenes.

El geólogo británico William Smith hizo progresar la estratigrafía al descubrir los estratos de Inglaterra y representarlos en un mapa geológico que hoy permanece casi inalterado. Smith, en un primer momento, investigó los estratos a lo largo de distancias relativamente cortas; luego, correlacionó unidades estratigráficas del mismo periodo pero con distinto contenido en rocas. Después del desarrollo de la teoría de la evolución de Charles Darwin en el siglo XIX, se pudo llegar al principio de la sucesión de la fauna. Según este principio, la vida en cada periodo de la historia terrestre es única, los restos fósiles son una base para el reconocimiento de los yacimientos que les son contemporáneos y pueden ser usados para reunir fragmentos registrados dispersos en una secuencia cronológica conocida como escala geológica (ver más abajo).
2.4.3

Ciclos de actividad geológica
Rocas plegadas y dinámica terrestre
La teoría de la tectónica de placas explica cómo se forman las montañas con las fuerzas que modelan la corteza terrestre. Las grandes piezas de corteza se desplazan lateralmente. Esto crea grandes fuerzas de compresión que pliegan y llegan a romper las rocas. Estas capas de roca sedimentaria muestran un pliegue anticlinal en el que las capas se doblan hacia abajo.

Muchos geólogos del siglo XIX comprendieron que la Tierra es un planeta con actividad térmica y dinámica, tanto en su interior como en su corteza. Los que eran conocidos como estructuralistas o neocatastrofistas creían que los trastornos catastróficos o estructurales eran responsables de las características topográficas de la Tierra. Así, el geólogo inglés William Buckland y sus seguidores postulaban cambios frecuentes del nivel marino y cataclismos en las masas de tierra para explicar las sucesiones y las roturas, o discontinuidades, de las secuencias estratigráficas. Por el contrario, Hutton consideraba la historia terrestre en términos de ciclos sucesivos superpuestos de actividad geológica. Llamaba cinturones orogénicos a las cintas largas de rocas plegadas, que se creía que eran resultado de una variedad de ciclos, y orogénesis a la formación de montañas por los procesos de plegamiento y de elevación. Otros geólogos apoyaron más tarde estos conceptos y distinguieron cuatro grandes periodos orogénicos: el huronense (final de la era precámbrica); el caledonio (principio de la era paleozoica); el herciniano (final de la era paleozoica) y el alpino (final del periodo cretácico).
2.4.4

Estudio de campo
La exploración del Medio Oeste (Estados Unidos) en el siglo XIX suministró todo un cuerpo nuevo de datos geológicos que tuvieron un efecto inmediato en la teoría geomorfológica. Las primeras expediciones de medición en esta zona fueron lideradas por Clarence King, Ferdinand Vandeever Hayden y John Wesley Powell, entre otros, bajo los auspicios del gobierno. Grove Karl Gilbert, el más sobresaliente de los colaboradores de Powell, reconoció un tipo de topografía causada por fallas en la corteza terrestre y dedujo un sistema de leyes que gobierna el desarrollo de los continentes. También en Argentina, el antropólogo y geólogo Florentino Ameghino (1854-1911) desarrolló una labor intensa en toda América del Sur, especialmente en el Cono Sur. Evolucionista en la dirección de Lyell y Darwin, publicó, entre otras obras, Geología, paleografía, paleontología y antropología de la República Argentina (1910).
2.5

Siglo XX
Los avances tecnológicos de este siglo han suministrado herramientas nuevas y sofisticadas a los geólogos y les han permitido medir y controlar los procesos terrestres con una precisión antes inalcanzable. En su teoría básica, el campo de la geología experimentó una gran revolución con la introducción y el desarrollo de la hipótesis de la tectónica de placas que establece que la corteza de la Tierra y la parte superior sólida del manto se divide en varias placas que se mueven, chocan o se alejan en intervalos geológicos. La litosfera que constituye las placas se forma en las zonas de borde constructivo de placas, que son las dorsales de los centros de algunas cuencas oceánicas y los valles en rift de áreas continentales. Esa litosfera se destruye por fusión en el manto en los bordes destructivos o zonas de subducción, donde una placa se introduce por debajo de otra formando cordilleras y zonas volcánicas. Los lugares de la Tierra donde se producen los grandes terremotos tienden a situarse en los límites de estas placas sugiriendo que la actividad sísmica puede interpretarse como el resultado de movimientos horizontales de éstas.
Esta hipótesis se relaciona con el concepto de deriva continental, propuesta por el geofísico alemán Alfred Wegener en 1912. Fue apoyada más tarde por la exploración de las profundidades marinas, gracias a la cual se obtuvieron pruebas de que el fondo marino se extiende, creando un flujo de corteza nueva en las dorsales oceánicas. El concepto de la tectónica de placas se ha relacionado desde entonces con el origen y el movimiento de los continentes, con la generación de corteza continental y oceánica y con su evolución temporal. De esta forma, los geólogos del siglo XX han desarrollado una teoría para unificar muchos de los procesos más importantes que dan forma a la Tierra y a sus continentes.
3

LA ESCALA DE TIEMPOS GEOLÓGICOS
Escala de tiempos geológicos

Se obtienen registros de la geología de la Tierra de cuatro clases principales de roca, cada una producida en un tipo distinto de actividad cortical: 1) erosión y transporte que posibilitan la posterior sedimentación que, por compactación y litificación, produce capas sucesivas de rocas sedimentarias; 2) expulsión, desde cámaras profundas de magma, de roca fundida que se enfría en la superficie de la corteza terrestre (rocas volcánicas); 3) estructuras geológicas formadas en rocas preexistentes que sufrieron deformaciones; y 4) registros de actividad plutónica o magmática en el interior de la Tierra suministrados por estudios de las rocas metamórficas o rocas plutónicas profundas. Se establece un esquema con los sucesos geológicos al datar estos episodios usando diversos métodos radiométricos y relativistas.
Las divisiones de la escala de tiempos geológicos resultante se basan, en primer lugar, en las variaciones de las formas fósiles encontradas en los estratos sucesivos. Sin embargo, los primeros 4.000 a 600 millones de años de la corteza terrestre están registrados en rocas que no contienen casi ningún fósil; sólo existen fósiles adecuados para correlaciones estratigráficas de los últimos 600 millones de años, desde el cámbrico inferior. Por esta razón, los científicos dividen la extensa existencia de la Tierra en dos grandes divisiones de tiempo: el precámbrico (que incluye los eones arcaico y proterozoico) y el fanerozoico, que comienza en el cámbrico y llega hasta la época actual.
Diferencias fundamentales en los agregados fósiles del fanerozoico primitivo, medio y tardío han dado lugar a la designación de tres grandes eras: el paleozoico (vida antigua), el mesozoico (vida intermedia) y el cenozoico (vida reciente). Las principales divisiones de cada una de estas eras son los periodos geológicos, durante los cuales las rocas de los sistemas correspondientes fueron depositadas en todo el mundo. Los periodos tienen denominaciones que derivan en general de las regiones donde sus rocas características están bien expuestas; por ejemplo, el pérmico se llama así por la provincia de Perm, en Rusia. Algunos periodos, por el contrario, tienen el nombre de depósitos típicos, como el carbonífero por sus lechos de carbón, o de pueblos primitivos, como el ordovícico y el silúrico por los ordovices y los siluros de las antiguas Gran Bretaña y Gales. Los periodos terciario y cuaternario de la era cenozoica se dividen en épocas y edades, desde el paleoceno al holoceno (o tiempo más reciente). Además de estos periodos, los geólogos también usan divisiones para el tiempo de las rocas, llamados sistemas, que de forma similar se dividen en series y algunas veces en unidades aún más pequeñas llamadas fases. Véase Eón.
El descubrimiento de la radiactividad permitió a los geólogos del siglo XX idear métodos de datación nuevos, pudiendo así asignar edades absolutas, en millones de años, a las divisiones de la escala de tiempos. A continuación se expone una descripción general de estas divisiones y de las formas de vida en las que se basan. Los registros fósiles más escasos de los tiempos precámbricos, como hemos dicho, no permiten divisiones tan claras.
3.1

Periodo cámbrico (570 a 510 millones de años)
Una explosión de vida (la llamada “explosión cámbrica”) pobló los mares, pero la tierra firme permaneció estéril. De este periodo data el origen de casi todos los grandes tipos principales de invertebrados. Son muy característicos los grupos de trilobites (extintos en la actualidad) con miles de especies diferentes, equinoideos y arqueociátidos, entre otros. Colisiones múltiples entre las placas de la corteza terrestre crearon el primer supercontinente, llamado Gondwana.
3.2

Periodo ordovícico (510 a 439 millones de años)
Gondwana se va acercando al polo sur y Escandinavia y Norteamérica convergen. Los trilobites empiezan a declinar en este periodo en el que otros importantes grupos hicieron su primera aparición, entre ellos estaban los corales, los crinoideos, los briozoos y los pelecípodos. Surgieron también peces con escudo óseo externo y sin mandíbula, que son los primeros vertebrados conocidos; sus fósiles se encuentran en lechos de antiguos estuarios de América del Norte. El periodo acabó en una fase de glaciación que supuso la extinción de muchos grupos de organismos.
3.3

Periodo silúrico (439 a 408,5 millones de años)
La vida se aventuró en tierra bajo la forma de plantas simples llamadas psilofitinas, que tenían un sistema vascular para la circulación de agua, y de animales parecidos a los escorpiones, parientes de los artrópodos marinos, extintos en la actualidad, llamados euriptéridos. La cantidad y la variedad de trilobites disminuyeron, pero los mares abundaban en corales, en cefalópodos y en peces mandibulados. Es un periodo de clima globalmente cálido.
3.4

Periodo devónico (408,5 a 362,5 millones de años)
Este periodo se conoce también como la edad de los peces, por la abundancia de sus fósiles entre las rocas de este periodo. Los peces se adaptaron tanto al agua dulce como al agua salada. Entre ellos había algunos con escudo óseo externo, con o sin mandíbula, tiburones primitivos (aún existe una subespecie de los tiburones de esta época) y peces óseos a partir de los cuales evolucionaron los anfibios. En las zonas de tierra, se hallaban muchos helechos gigantes y la presencia vegetal continental es ya importante.
3.5

Periodo carbonífero (362,5 a 290 millones de años)
Los trilobites estaban casi extinguidos, pero los corales, los crinoideos y los braquiópodos eran abundantes, así como todos los grupos de moluscos. Los climas húmedos y cálidos fomentaron la aparición de bosques exuberantes en los pantanales, que dieron lugar a los principales yacimientos de carbón que existen en la actualidad. Sin embargo, en otras zonas continentales se producen glaciaciones importantes. Las plantas dominantes eran los licopodios con forma de árbol, los equisetos, los helechos y unas plantas extintas llamadas pteridospermas o semillas de helecho. Los anfibios se extendieron y dieron nacimiento a los reptiles, primeros vertebrados que vivían sólo en tierra. Aparecieron también insectos alados como las libélulas. Prosigue la convergencia de los dos grandes supercontinentes Laurasia y Gondwana hacia la formación de la segunda Pangea.
3.6

Periodo pérmico (290 a 245 millones de años)
Las zonas continentales se unieron en un único continente llamado Pangea II. Esta múltiple colisión continental generó la orogenia herciniana. Gran parte de Pangea II se sitúa en la cercanía del polo sur, por lo que se produce una fuerte glaciación. El periodo termina con una gran extinción en masa de muchos organismos que acabó con más de un 90% de las especies marinas existentes.
3.7

Periodo triásico (245 a 208 millones de años)
El principio de la era mesozoica quedó marcado por la disgregación de Pangea II y la reaparición de los supercontinentes del Norte (Laurasia) y del Sur (Gondwana). Las formas de vida cambiaron considerablemente en esta era, conocida como la edad de los reptiles. Aparecieron nuevas familias de pteridospermas, y las coníferas y las cícadas se convirtieron en los mayores grupos florales, junto a los ginkgos y a otros géneros. Surgieron reptiles, como los dinosaurios y las tortugas, además de los mamíferos.
3.8

Periodo jurásico (208 a 145,6 millones de años)
Al desplazarse Gondwana, el norte del océano Atlántico se ensanchaba y nacía el Atlántico sur. Los dinosaurios dominaban en tierra, mientras crecía el número de reptiles marinos, como los ictiosaurios y los plesiosaurios. Aparecieron las primeras aves y los corales formadores de arrecifes crecían en las aguas poco profundas de las costas. Entre los artrópodos evolucionaron animales semejantes a los cangrejos y a las langostas (crustáceos).
3.9

Periodo cretácico (145,6 a 65 millones de años)
Los dinosaurios prosperaron y evolucionaron hacia formas más especializadas, para desaparecer de forma brusca al final de este periodo, junto a muchas otras formas de vida. Las teorías para explicar esta extinción masiva tienen en la actualidad un gran interés científico. Los cambios florales de este periodo fueron los más notables de los ocurridos en la historia terrestre. Las gimnospermas estaban extendidas, pero al final del periodo aparecieron las angiospermas (plantas con flores).
3.10

Periodo terciario (65 a 1,64 millones de años)
En el terciario se rompió el enlace de tierra entre América del Norte y Europa y, al final del periodo, se fraguó el que une América del Norte y América del Sur. Durante el cenozoico, las formas de vida de la tierra y del mar se hicieron más parecidas a las existentes en la actualidad. Se termina de formar la Patagonia y el levantamiento de la cordillera de los Andes. Las formaciones herbáceas se expandieron y esto provocó la especialización de muchos herbívoros, con cambios en su dentición. Al haber desaparecido la mayoría de los reptiles dominantes al final del cretácico, el cenozoico fue la edad de los mamíferos. De esta forma, en la época del eoceno se desarrollaron nuevos grupos de mamíferos, como ciertos animales pequeños parecidos a los caballos actuales, rinocerontes, tapires, rumiantes, ballenas y ancestros de los elefantes. En el oligoceno aparecieron miembros de las familias de los gatos y de los perros, así como algunas especies de monos. En el mioceno los marsupiales eran numerosos, y aparecieron los antropoides (entre los que surgirían los homínidos). En el plioceno, los mamíferos con placenta alcanzaron su apogeo, en número y diversidad de especies, extendiéndose hasta el periodo cuaternario.
3.11

Periodo cuaternario (desde hace 1,64 millones de años hasta la actualidad)
Capas de hielo continentales intermitentes cubrieron gran parte del hemisferio norte. Los restos fósiles ponen de manifiesto que hubo muchos tipos de homínidos primitivos en el centro y sur de África, en China y en Java, en el pleistoceno bajo y medio; pero los seres humanos modernos (Homo sapiens) no surgieron hasta el final del pleistoceno. Más tarde, en este periodo, los humanos cruzaron al Nuevo Mundo a través del estrecho de Bering, cuyo tránsito era viable debido a la bajada del nivel del mar. Las capas de hielo retrocedieron al final y empezó la época reciente, el holoceno.
4

CAMPOS DEL ESTUDIO GEOLÓGICO
Corte geológico

La geología se ocupa de la historia de la Tierra, e incluye la historia de la vida, y cubre todos los procesos físicos que actúan en la superficie o en la corteza terrestres. En un sentido más amplio, estudia también las interacciones entre las rocas, los suelos, el agua, la atmósfera y las formas de vida. En la práctica, los geólogos se especializan en una rama, física o histórica, de la geología. La geología física incluye campos como geofísica, petrología y mineralogía, y está enfocada hacia los procesos y las fuerzas que dan forma al exterior de la Tierra y que actúan en su interior. Mientras, la geología histórica está interesada por la evolución de la superficie terrestre y de sus formas de vida e implica investigaciones de paleontología, de estratigrafía, de paleografía y de geocronología.
4.1

Geofísica
El objetivo de los geofísicos es deducir las propiedades físicas de la Tierra, junto a su composición interna, a partir de diversos fenómenos físicos. Estudian el campo geomagnético, el paleomagnetismo en rocas y suelos, los fenómenos de flujo de calor en el interior terrestre, la fuerza de la gravedad y la propagación de ondas sísmicas (sismología), por ejemplo. Como subcampo, la geofísica aplicada investiga, con propósitos relacionados con el ser humano, características de escala muy pequeña y poco profundas en la corteza, como pequeños domos, sinclinales y fallas. La geofísica de exploración combina también información física y geológica para resolver problemas prácticos relacionados con la búsqueda de petróleo y gas, con la localización de estratos de agua, con la detección de yacimientos con menas nuevas de metales y con diversos tipos de ingeniería civil.
4.2

Geoquímica
La geoquímica se refiere a la química de la Tierra en su conjunto, pero el tema se divide en áreas como la geoquímica sedimentaria, la orgánica, el nuevo campo de la geoquímica del entorno y algunos otros. El origen y la evolución de los elementos terrestres y de las grandes clases de rocas y minerales son importantes para los geoquímicos. En especial estudian la distribución y las concentraciones de los elementos químicos en los minerales, las rocas, los suelos, las formas de vida, el agua y la atmósfera. El conocimiento de su circulación —por ejemplo, los ciclos geoquímicos del carbono, el nitrógeno, el fósforo y el azufre— tiene importancia práctica, así como el estudio de la distribución y abundancia de los isótopos y de su estabilidad en la naturaleza (véase Ciclo del carbono). La geoquímica de exploración, o de prospección, tiene aplicaciones prácticas en los principios geoquímicos teóricos de la búsqueda de minerales.
4.3

Petrología
La petrología se encarga del origen, la aparición, la estructura y la historia de las rocas, en particular de las ígneas y de las metamórficas. El estudio de la petrología de sedimentos y de rocas sedimentarias se conoce como petrología sedimentaria. La petrografía, disciplina relacionada, trata de la descripción y las características de las rocas cristalinas determinadas por examen microscópico con luz polarizada. Los petrólogos estudian los cambios ocurridos de forma espontánea en las masas de roca cuando el magma se solidifica, cuando rocas sólidas se funden total o parcialmente, o cuando sedimentos experimentan transformaciones químicas o físicas. Quienes trabajan en este campo se preocupan de la cristalización de los minerales y de la solidificación del vidrio desde materia fundida a altas temperaturas (procesos ígneos), de la recristalización de minerales a alta temperatura sin la mediación de una fase fundida (procesos metamórficos), del intercambio de iones entre minerales de rocas sólidas y de fases fluidas migratorias (procesos metasomáticos o diagenéticos) y de los procesos de sedimentación, que incluyen la meteorización, el transporte y el depósito.
4.4

Mineralogía
La ciencia de la mineralogía trata de los minerales de la corteza terrestre y de los encontrados fuera de la Tierra, como las muestras lunares o los meteoritos. La cristalografía, rama de la mineralogía, implica el estudio de la forma externa y de la estructura interna de los cristales naturales y artificiales. Los mineralogistas estudian la formación, la aparición, las propiedades químicas y físicas, la composición y la clasificación de los minerales. La mineralogía determinativa es la ciencia de la identificación de un espécimen por sus propiedades físicas y químicas. La mineralogía económica se especializa en los procesos responsables de la formación de menas, en especial de las que tienen importancia industrial y estratégica.
Geología estructural
Cristales de roca en una muestra lunar
Para tomar una imagen de una muestra fina de roca lunar se usa un microscopio petrográfico. Los colores representan distintas composiciones minerales.

Aunque, en un principio, a los geólogos estructurales les interesaba especialmente el análisis de las deformaciones de los estratos sedimentarios, ahora estudian más las de las rocas en general. Comparando las distintas características de estructuras, se puede llegar a una clasificación de tipos relacionados. La geología estructural comparativa, que se ocupa de los grandes rasgos externos, contrasta con las aproximaciones teóricas y experimentales que emplean el estudio microscópico de granos minerales de rocas deformadas. Los geólogos especializados en la búsqueda del petróleo y del carbón deben usar la geología estructural en su trabajo diario, en especial en la prospección petrolífera, donde la detección de trampas estructurales que puedan contener petróleo es una fuente importante de información.
Sedimentología
Este campo, también llamado geología sedimentaria, investiga los depósitos terrestres o marinos, antiguos o recientes, su fauna, su flora, sus minerales, sus texturas y su evolución en el tiempo y en el espacio. Los sedimentólogos estudian numerosos rasgos intrincados de rocas blandas y duras y sus secuencias naturales, con el objetivo de reestructurar el entorno terrestre primitivo en sus sistemas estratigráficos y tectónicos. El estudio de las rocas sedimentarias incluye datos y métodos tomados de otras ramas de la geología, como la estratigrafía, la geología marina, la geoquímica, la mineralogía y la geología del entorno.
Paleontología
Paleontóloga con hueso de Seismosaurus
Los paleontólogos tardan a menudo horas en desenterrar un único hueso, retirando con cuidado la tierra y la roca que lo rodea. Aquí, una costilla de Seismosaurus está siendo recompuesta antes de continuar la excavación.

La paleontología, estudio de la vida a través del registro fósil, investiga la relación entre los fósiles de animales (paleozoología) y de plantas (paleobotánica) con plantas y animales existentes. La investigación de fósiles microscópicos (micropaleontología) implica técnicas distintas que la de especímenes mayores. Los fósiles, restos de vida del pasado geológico preservados por medios naturales en la corteza terrestre, son los datos principales de esta ciencia. La paleontografía es la descripción formal y sistemática de los fósiles (de plantas y de animales), y las paleontologías de invertebrados y vertebrados se consideran con frecuencia subdisciplinas separadas.
Geomorfología
La geomorfología, es decir, forma y desarrollo de la Tierra, es el intento de establecer un modelo explicativo de la parte externa de la Tierra. Los geomorfólogos explican la morfología de la superficie terrestre en términos de principios relacionados con la acción glaciar, los procesos fluviales, el transporte y los depósitos realizados por el viento, la erosión y la meteorización. Los subcampos más importantes se especializan en las influencias tectónicas en la forma de las masas de tierra (morfotectónica), en la influencia del clima en los procesos morfogenéticos y en los agregados de tierra (geomorfología del clima) y en la medida y el análisis estadístico de datos (geomorfología cuantitativa).
Geología económica
Esta rama mayor de la geología conecta con el análisis, la exploración y la explotación de materia geológica útil para los humanos, como combustibles, minerales metálicos y no metálicos, agua y energía geotérmica. Campos afines incluyen la ciencia de la localización de minerales industriales o estratégicos (geología de exploración), el procesado de menas o vetas (metalurgia) y la aplicación práctica de las teorías geológicas a la minería (geología minera).
Ingeniería geológica
Los ingenieros geólogos aplican los principios geológicos a la investigación de los materiales naturales —tierra, roca, agua superficial y agua subterránea— implicados en el diseño, la construcción y la explotación de proyectos de ingeniería civil. Son representativos de estos proyectos los diques, los puentes, las autopistas, los oleoductos, el desarrollo de zonas de alojamiento y los sistemas de gestión de residuos.
Geología ambiental
La geología ambiental recoge y analiza datos geológicos con el objetivo de resolver los problemas creados por el uso humano del entorno natural. Un área muy importante se ocupa del análisis de los riesgos y peligros geológicos como terremotos, aludes y corrimientos de tierra, erosión de las costas e inundaciones (véase Medidas de control de inundaciones). La geología ambiental se relaciona con otras ciencias físicas como geoquímica e hidrología, ciencias biológicas y sociales e ingeniería.
PROCESOS GEOLÓGICOS
Los procesos geológicos pueden dividirse en los que se originan en el interior de la Tierra (procesos endógenos) y los que lo hacen en su parte externa (procesos exógenos).
Procesos endógenos
Tipos de fallas terrestres

La separación de las grandes placas litosféricas, la deriva continental y la expansión de la corteza oceánica ponen en acción fuerzas dinámicas asentadas a grandes profundidades. El diastrofismo es un término general que alude a los movimientos de la corteza producidos por fuerzas terrestres endogénicas que producen las cuencas de los océanos, los continentes, las mesetas y las montañas. El llamado ciclo geotectónico relaciona estas grandes estructuras con los movimientos principales de la corteza y con los tipos de rocas en distintos pasos de su desarrollo.

Erupción del monte Saint Helens
El volcán Saint Helens, en la zona suroeste del estado de Washington en Estados Unidos, entró en erupción el 18 de mayo de 1980, después de un largo periodo de latencia. La violenta explosión despidió nubes de ceniza y otros restos volcánicos a la atmósfera, y perecieron al menos 60 personas. Con la erupción, la altura de la montaña descendió de 2.950 a 2.550 metros.

La orogénesis, o creación de montañas, tiende a ser un proceso localizado que distorsiona los estratos preexistentes. La epirogénesis afecta a partes grandes de los continentes y de los océanos, sobre todo por movimientos verticales, y produce mesetas y cuencas. Los desplazamientos corticales lentos y graduales actúan en particular sobre los cratones, regiones estables de la corteza. Las fracturas y desplazamientos de rocas, que pueden medir desde unos pocos centímetros hasta muchos kilómetros, se llaman fallas. Su aparición está asociada con los bordes entre placas que se deslizan unas sobre otras —por ejemplo, la falla de San Andrés— y con lugares donde los continentes se separan, como el valle del Rift, en África occidental. Los géiseres y los manantiales calientes se encuentran, como los volcanes, en áreas tectónicas inestables.

Terremoto de Alaska
El terremoto de Alaska de 1964 fue de 9,2 en la escala de Richter, uno de los más fuertes que se han producido en Norteamérica. Provocó la muerte de 131 personas y devastó parte de Anchorage y Valdez. El terremoto deshizo los cimientos y dejó grietas en las calles.

Los volcanes se producen por la efusión de lava desde las profundidades de la Tierra. La meseta de Columbia, en el oeste de Estados Unidos, está cubierta por una capa de basalto volcánico con más de 3.000 m de espesor y un área de unos 52.000 km2. Estas mesetas basálticas han sido creadas por volcanes. Los volcanes de la cordillera de los Andes (sur) arrojaban, ya en el cenozoico, gran cantidad de cenizas, las cuales, desparramadas, dieron origen a la región Santacruceña (Argentina), en la que los mantos de basalto cubren la meseta patagónica. Otros tipos de volcanes incluyen los de escudo, con perfil ancho y convexo, como los que forman las islas Hawai, y los estratovolcanes, como el Fuji Yama y el monte Saint Helens (Estados Unidos), compuestos de capas yuxtapuestas de diferentes materiales.
Los sismos están causados por la descarga abrupta de tensiones acumuladas de forma muy lenta por la actividad de las fallas, de los volcanes o de ambos. El movimiento súbito de la superficie terrestre es una manifestación de procesos endógenos que pueden provocar olas sísmicas (tsunamis), aludes, colapso de superficies o subsidencia y fenómenos relacionados.
Procesos exógenos
Cualquier medio natural capaz de mover la materia terrestre se llama agente geomorfológico. Los ríos, las aguas subterráneas, los glaciares, el viento y los movimientos de las masas de agua (mareas, olas y corrientes) son agentes geomorfológicos primarios. Puesto que se originan en el exterior de la corteza, estos procesos se llaman epígenos o exógenos.
La meteorización es un término que designa un grupo de procesos responsables de la desintegración y de la descomposición de rocas sobre el terreno. Puede ser física, química o biológica y es un prerrequisito para la erosión. La caída de masas ladera abajo (transferencia de material hacia abajo por la acción de su propio peso) comprende deslizamientos y procesos como los flujos y corrimientos de tierra y las avalanchas de escombros. La acción hidráulica es el arrastre por el agua de materia en suspensión o suelta de mayor tamaño; el proceso similar llevado a cabo por el viento se conoce como deflación. La acción de hielo en movimiento se llama a veces burilado; y los glaciares provocan arranques y transportes de rocas. La sedimentación fluvial contribuye al nivelado general de la superficie terrestre como resultado de depósitos, que se forman cuando el medio que los transporta pierde fuerza.
ORGANIZACIONES
Numerosas organizaciones geológicas prestan a sus miembros una amplia variedad de servicios. En primer lugar, actúan como foros para la difusión del conocimiento mediante revistas profesionales, boletines y otras comunicaciones. Proporcionan además códigos de conducta profesional, cursos prácticos, servicios de colocación y certificación de especialistas. Entre las organizaciones más representativas están la Asociación de Geocientíficos para el Desarrollo Internacional, la Sociedad de Información de la Geociencia, la Unión Internacional de las Ciencias Geológicas, la Sociedad de Geólogos Económicos y la Sociedad de Paleontólogos y Mineralogistas Económicos.


No hay comentarios:

Publicar un comentario en la entrada

Entradas populares

Me gusta

Seguidores