Patrocinador1

Cuadrado mágico





Cuadrado mágico, en matemáticas, agrupación de diversos números colocados formando un cuadrado en el que la suma de cada columna, la de cada fila y la de las diagonales son todas iguales. Por ejemplo, la siguiente matriz de números

es un cuadrado mágico de tercer orden (el orden es el número de columnas verticales o de filas horizontales), y la suma constante es 15. En la antigüedad, este tipo de configuración numérica se consideraba como amuleto de buena suerte o talismán. Más tarde, los matemáticos empezaron a interesarse en los cuadrados mágicos como problema del análisis matemático.
Los números de un cuadrado mágico de n-ésimo orden están casi siempre limitados a los enteros 1, 2, 3..., n2. La suma de
Por tanto, la suma de cada una de las n filas, de cada una de las n columnas o de las dos diagonales principales del cuadrado mágico es
Este número se denomina constante del cuadrado mágico. Además de las diagonales principales, que en el ejemplo anterior son las tríadas (2,5,8) y (6,5,4), se pueden también considerar las diagonales quebradas, que en este ejemplo son (7,1,4), (6,9,3), (2,1,3) y (7,9,8). Un cuadrado mágico se denomina panmágico o pandiagonal si la suma de cada una de las diagonales quebradas es también igual a la constante. El cuadrado mágico de tercer orden mostrado anteriormente no es panmágico, pero el de cuarto orden
es panmágico pues las sumas de los números de las cuatro filas, las cuatro columnas y las ocho diagonales son todas 34.
Un cuadrado mágico se denomina bimágico o doblemente mágico si al sustituir cada número por su cuadrado, sigue siendo un cuadrado mágico. Se llama trimágico o triplemente mágico si al reemplazar cada elemento por su cuadrado y por su cubo sigue siendo un cuadrado mágico.
Un cuadrado mágico con los elementos 1,2..., n2, existe para todo orden n excepto n = 2. Hasta la fecha, sin embargo, no se ha podido encontrar una regla general para la construcción de cuadrados mágicos, y no se sabe cuántos cuadrados mágicos distintos existen para cada orden n. Se han desarrollado reglas particulares para la construcción de cuadrados mágicos de tres tipos: aquellos cuyo orden, n, es impar, aquellos cuyo orden, n, es divisible por 2 pero no por 4 y aquellos cuyo orden, n, es divisible por 4. También se han estudiado los cubos mágicos y otras figuras geométricas.
El cuadrado latino, es un cuadrado cuyos elementos son los enteros 1,2..., n (o n números distintos cualesquiera). Cada uno de estos números aparece n veces en el cuadrado, de manera que los enteros de una fila o de una columna son todos distintos entre sí. Por tanto,
son cuadrados latinos. Si se superpone el segundo sobre el primero, manteniendo el mismo orden, se forma un cuadrado de parejas
en el que ninguna pareja se repite. Un cuadrado de parejas como éste, en el que no se repite ninguna, se denomina cuadrado euleriano (en honor al matemático suizo Leonhard Euler), o grecolatino. Los cuadrados latinos y eulerianos han sido ampliamente estudiados.


No hay comentarios:

Publicar un comentario

Entradas populares

Me gusta

Seguidores