Patrocinador1

Electricidad y magnetismo




Charles de Coulomb
El físico francés Charles de Coulomb destacó por sus trabajos realizados en el campo de la electricidad. En 1785 confirmó experimentalmente la ley que lleva su nombre, y que permite calcular la fuerza entre las cargas eléctricas.

Aunque los antiguos griegos conocían las propiedades electrostáticas del ámbar, y los chinos ya fabricaban imanes con magnetita en el 2700 a.C., los fenómenos eléctricos y magnéticos no empezaron a comprenderse hasta finales del siglo XVIII, cuando comenzaron a realizarse experimentos en estos campos. En 1785, el físico francés Charles de Coulomb confirmó por primera vez de forma experimental que las cargas eléctricas se atraen o se repelen con una intensidad inversamente proporcional al cuadrado de la distancia que las separa (ley de Coulomb). Más tarde el matemático francés Siméon Denis Poisson y su colega alemán Carl Friedrich Gauss desarrollaron una potente teoría para calcular el efecto de un número indeterminado de cargas eléctricas estáticas arbitrariamente distribuidas.

Ecuaciones de Maxwell
James Clerk Maxwell resumió las propiedades conocidas de los fenómenos eléctricos y magnéticos en cuatro ecuaciones. La primera relaciona el campo eléctrico E que atraviesa una superficie A (por ejemplo una esfera) con la carga eléctrica Q contenida dentro de la superficie. La segunda ecuación relaciona el campo magnético B que atraviesa una superficie A con la carga magnética contenida en la superficie, y afirma que dicha carga es nula, es decir, que no existen cargas magnéticas. La tercera ecuación describe dos formas de inducir un campo magnético B en una espira circular l. Una de ellas implica el movimiento de cargas en una corriente eléctrica Ι, y la otra implica un flujo eléctrico variable. La cuarta ecuación describe la forma de inducir un campo eléctrico E mediante un flujo magnético variable. La variación de un flujo depende de la variación del campo (E o B) y de la superficie A atravesada por el mismo.

Dos partículas con cargas opuestas se atraen, por lo que tienden a acelerarse una hacia la otra. Si el medio a través del cual se mueven ofrece resistencia, pueden acabar moviéndose con velocidad constante (en lugar de moverse con aceleración constante) a la vez que el medio se calienta y sufre otras alteraciones. La posibilidad de mantener una fuerza electromotriz capaz de impulsar de forma continuada partículas eléctricamente cargadas llegó con el desarrollo de la pila química en 1800, debido al físico italiano Alessandro Volta. La teoría clásica de un circuito eléctrico simple supone que los dos polos de una pila se mantienen cargados positiva y negativamente debido a las propiedades internas de la misma. Cuando los polos se conectan mediante un conductor, las partículas cargadas negativamente son repelidas por el polo negativo y atraídas por el positivo, con lo que se mueven hacia él y calientan el conductor, ya que ofrece resistencia a dicho movimiento. Al llegar al polo positivo las partículas son obligadas a desplazarse dentro de la pila hasta el polo negativo, en contra de las fuerzas que se oponen a ello según la ley de Coulomb. El físico alemán Georg Simon Ohm descubrió la existencia de una constante de proporcionalidad sencilla entre la corriente que fluye por el circuito y la fuerza electromotriz suministrada por la pila. Esta constante es la resistencia eléctrica del circuito, R. La ley de Ohm, que afirma que la resistencia es igual a la fuerza electromotriz, o tensión, dividida entre la intensidad de corriente, no es una ley fundamental de la física de aplicación universal, sino que describe el comportamiento de una clase limitada de materiales sólidos.
Los conceptos elementales del magnetismo, basados en la existencia de pares de polos opuestos, aparecieron en el siglo XVII y fueron desarrollados en los trabajos de Coulomb. Sin embargo, la primera conexión entre el magnetismo y la electricidad se encontró en los experimentos del físico y químico danés Hans Christian Oersted, que en 1819 descubrió que un cable conductor por el que fluía una corriente eléctrica desviaba una aguja magnética situada en sus proximidades. A la semana de conocer el descubrimiento de Oersted, el científico francés André Marie Ampère demostró experimentalmente que dos cables por los que circula una corriente ejercen una influencia mutua igual a la de los polos de un imán. En 1831, el físico y químico británico Michael Faraday descubrió que podía inducirse el flujo de una corriente eléctrica en un conductor en forma de espira no conectado a una batería, moviendo un imán en sus proximidades o situando cerca otro conductor por el que circulara una corriente variable. La forma más fácil de enunciar la íntima relación entre la electricidad y el magnetismo, perfectamente establecida en la actualidad, es a partir de los conceptos de campo eléctrico y magnético. La intensidad, dirección y sentido del campo en cada punto mide la fuerza que actuaría sobre una carga unidad (en el caso del campo eléctrico) o una corriente unidad (en el caso del campo magnético) situadas en ese punto. Las cargas eléctricas estacionarias producen campos eléctricos; las corrientes —esto es, las cargas en movimiento— producen campos eléctricos y magnéticos. Un campo eléctrico también puede ser producido por un campo magnético variable, y viceversa. Los campos eléctricos ejercen fuerzas sobre las partículas cargadas por el simple hecho de tener carga, independientemente de su velocidad; los campos magnéticos sólo ejercen fuerzas sobre partículas cargadas en movimiento.

Alessandro Volta
Alessandro Volta (a quien Napoleón nombró conde por su trabajo en el campo de la electricidad) es famoso por fabricar la primera pila eléctrica, conocida como pila voltaica. Volta, profesor de física y gran experimentador, realizó muchas otras contribuciones a la ciencia, como la invención del electróforo, un aparato para generar cargas estáticas. La unidad de potencial eléctrico, el voltio, recibe este nombre en su honor.

Estos hallazgos cualitativos fueron expresados en una forma matemática precisa por el físico británico James Clerk Maxwell, que desarrolló las ecuaciones diferenciales en derivadas parciales que llevan su nombre. Las ecuaciones de Maxwell relacionan los cambios espaciales y temporales de los campos eléctrico y magnético en un punto con las densidades de carga y de corriente en dicho punto. En principio, permiten calcular los campos en cualquier momento y lugar a partir del conocimiento de las cargas y corrientes eléctricas. Un resultado inesperado que surgió al resolver las ecuaciones fue la predicción de un nuevo tipo de campo electromagnético producido por cargas eléctricas aceleradas. Este campo se propagaría por el espacio con la velocidad de la luz en forma de onda electromagnética, y su intensidad disminuiría de forma inversamente proporcional al cuadrado de la distancia de la fuente. En 1887, el físico alemán Heinrich Hertz consiguió generar físicamente esas ondas por medios eléctricos, con lo que sentó las bases para la radio, el radar, la televisión y otras formas de telecomunicación. Véase Radiación electromagnética.
El comportamiento de los campos eléctrico y magnético en estas ondas es bastante similar al de una cuerda tensa muy larga cuyo extremo se hace oscilar rápidamente hacia arriba y hacia abajo. Cualquier punto de la cuerda se mueve hacia arriba y hacia abajo con la misma frecuencia que la fuente de las ondas situada en el extremo de la cuerda. Los puntos de la cuerda situados a diferentes distancias de la fuente alcanzan su máximo desplazamiento vertical en momentos diferentes. Cada punto de la cuerda hace lo mismo que su vecino, pero lo hace algo más tarde si está más lejos de la fuente de vibración (véase Oscilación). La velocidad con que se transmite la perturbación a lo largo de la cuerda, o la “orden” de oscilar, se denomina velocidad de onda (véase Movimiento ondulatorio). Esta velocidad es función de la densidad lineal de la cuerda (masa por unidad de longitud) y de la tensión a la que esté sometida. Una fotografía instantánea de la cuerda después de llevar moviéndose cierto tiempo mostraría que los puntos que presentan el mismo desplazamiento están separados por una distancia conocida como longitud de onda, que es igual a la velocidad de onda dividida entre la frecuencia. En el caso del campo electromagnético, la intensidad del campo eléctrico se puede asociar al movimiento vertical de cada punto de la cuerda, mientras que el campo magnético se comporta del mismo modo pero formando un ángulo recto con el campo eléctrico (y con la dirección de propagación). La velocidad con que la onda electromagnética se aleja de la fuente es la velocidad de la luz.
3.4
Luz
Dispositivo de Michelson-Morley
En 1887, Albert Michelson y Edward Morley diseñaron un experimento para medir la velocidad de la Tierra con respecto al éter, una sustancia que se suponía que era el medio en que se propagaba la luz. Para ello dividieron un haz de luz en dos haces que se propagaban formando un ángulo recto y los hicieron interferir, formando un diagrama característico de franjas claras y oscuras. Si la Tierra (y por tanto el aparato) se moviera respecto al éter, la velocidad de los haces sería distinta, igual que la velocidad de un barco que va río arriba y después río abajo difiere de la de un barco que cruza el río. La diferencia de velocidades de los haces modificaría el diagrama de interferencia. Sin embargo, no se halló ninguna modificación. Éste y otros fracasos en la detección del movimiento de la Tierra en el éter llevaron 18 años después a Albert Einstein a desarrollar la teoría de la relatividad restringida, con lo que se abandonó la teoría del éter.

La aparente propagación lineal de la luz se conoce desde la antigüedad, y los griegos creían que la luz estaba formada por un flujo de corpúsculos. Sin embargo, había gran confusión sobre si estos corpúsculos procedían del ojo o del objeto observado. Cualquier teoría satisfactoria de la luz debe explicar su origen y desaparición y sus cambios de velocidad y dirección al atravesar diferentes medios. En el siglo XVII, Newton ofreció respuestas parciales a estas preguntas, basadas en una teoría corpuscular; el científico británico Robert Hooke y el astrónomo, matemático y físico holandés Christiaan Huygens propusieron teorías de tipo ondulatorio. No fue posible realizar ningún experimento cuyo resultado confirmara una u otra teoría hasta que, a principios del siglo XIX, el físico y médico británico Thomas Young demostró el fenómeno de la interferencia en la luz. El físico francés Augustin Jean Fresnel apoyó decisivamente la teoría ondulatoria.
La interferencia puede observarse colocando una rendija estrecha delante de una fuente de luz, situando una doble rendija algo más lejos y observando una pantalla colocada a cierta distancia de la doble rendija. En lugar de aparecer una imagen de las rendijas uniformemente iluminada, se ve una serie de bandas oscuras y claras equidistantes. Para explicar cómo las hipotéticas partículas de luz procedentes de la misma fuente, que llegan a la pantalla a través de las dos rendijas, pueden producir distintas intensidades de luz en diferentes puntos —e incluso anularse unas a otras y producir zonas oscuras— habría que considerar complejas suposiciones adicionales. En cambio, las ondas de luz pueden producir fácilmente un efecto así. Si se supone, como hizo Huygens, que cada una de las dos rendijas actúa como una nueva fuente que emite luz en todas direcciones, los dos trenes de onda que llegan a la pantalla en un mismo punto pueden no estar en fase aunque lo estuvieran al salir de las rendijas (se dice que dos vibraciones están en fase en un punto determinado cuando en cada momento se encuentran en la misma etapa de la oscilación: sus máximos coinciden en un mismo momento, y lo mismo ocurre con los mínimos). Según la diferencia de recorrido entre ambos trenes en cada punto de la pantalla, puede ocurrir que un desplazamiento “positivo” de uno de ellos coincida con uno “negativo” del otro —con lo que se producirá una zona oscura— o que lleguen simultáneamente dos desplazamientos positivos, o negativos, lo que provocará un refuerzo de las intensidades, y por ende una zona brillante. En cada punto brillante, la intensidad de la luz experimenta una variación temporal a medida que las sucesivas ondas en fase van desde el máximo desplazamiento positivo hasta el máximo negativo, pasando por cero, y vuelven de nuevo al máximo desplazamiento positivo. Sin embargo, ni el ojo ni ningún instrumento clásico puede determinar este rápido “parpadeo”, que en la zona de luz visible tiene una frecuencia que va de 4 × 1014 a 7,5 × 1014 hercios (ciclos por segundo). Aunque la frecuencia no se puede medir directamente, puede deducirse de las medidas de longitud de onda y velocidad. La longitud de onda se puede determinar midiendo la distancia entre ambas rendijas y la separación entre dos franjas brillantes adyacentes en la pantalla. Las longitudes de onda van desde 4 × 10-5 cm en la luz violeta hasta 7,5 × 10-5; cm en la luz roja; los demás colores corresponden a longitudes de onda intermedias.
El astrónomo danés Olaus Roemer fue el primero en medir la velocidad de la luz, en 1676. Roemer observó una aparente variación temporal entre los eclipses sucesivos de los satélites de Júpiter, que atribuyó a los cambios en la distancia entre la Tierra y Júpiter (según la posición de la primera en su órbita) y las consiguientes diferencias en el tiempo empleado por la luz para llegar a la Tierra. Sus medidas coincidían bastante con las observaciones más precisas realizadas en el siglo XIX por el físico francés Hippolyte Fizeau y con los trabajos del físico estadounidense Albert Michelson y sus colaboradores, que se extendieron hasta el siglo XX. En la actualidad, la velocidad de la luz en el vacío se considera que es 299.792,46 km/s. En la materia, la velocidad es menor y varía con la frecuencia: este fenómeno se denomina dispersión. Véase también Óptica; Espectro.
Los trabajos de Maxwell aportaron resultados importantes para la comprensión de la naturaleza de la luz, al demostrar que su origen es electromagnético: una onda luminosa corresponde a campos eléctricos y magnéticos oscilantes. Sus trabajos predijeron la existencia de luz no visible, y en la actualidad se sabe que las ondas o radiaciones electromagnéticas cubren todo un espectro, que empieza en los rayos gamma (véase Radiactividad), con longitudes de onda de 10-12 cm y aún menores, pasando por los rayos X, la luz visible y las microondas, hasta las ondas de radio, con longitudes de onda de hasta varios cientos de kilómetros. Maxwell también consiguió relacionar la velocidad de la luz en el vacío y en los diferentes medios con otras propiedades del espacio y la materia, de las que dependen los efectos eléctricos y magnéticos. Sin embargo, los descubrimientos de Maxwell no aportaron ningún conocimiento sobre el misterioso medio (que correspondería a la cuerda del ejemplo mencionado antes en la sección Electricidad y magnetismo de este artículo) por el que se pensaba que se propagaban la luz y las ondas electromagnéticas. A partir de las experiencias con las olas, el sonido y las ondas elásticas, los científicos suponían que existía un medio similar, un “éter luminífero”, sin masa, que llenaba todo el espacio (la luz puede desplazarse a través del vacío) y actuaba como un sólido (ya que se sabía que las ondas electromagnéticas eran transversales, puesto que las oscilaciones se producen en un plano perpendicular a la dirección de propagación, y en los gases y líquidos sólo pueden propagarse ondas longitudinales, como las ondas sonoras). La búsqueda de este misterioso éter ocupó la atención de una gran parte de los físicos a lo largo de los últimos años del siglo XIX.
El problema se complicaba por un aspecto adicional. Una persona que camine a 5 km/h en un tren que se desplaza a 100 km/h tiene una velocidad aparente de 105 km/h para un observador situado en el andén. La pregunta que surgía en relación con la velocidad de la luz era la siguiente: si la luz se desplaza a unos 300.000 km/s a través del éter, ¿a qué velocidad se desplazará con respecto a un observador situado en la Tierra, puesto que la Tierra también se mueve en relación al éter? ¿Cuál es la velocidad de la Tierra con respecto al éter, indicada por sus efectos sobre las ondas luminosas? El famoso experimento de Michelson-Morley, realizado en 1887 por Michelson y por el químico estadounidense Edward Williams Morley con ayuda de un interferómetro, pretendía medir esta velocidad. Si la Tierra se desplazara a través de un éter estacionario debería observarse una diferencia en el tiempo empleado por la luz para recorrer una distancia determinada según que se desplazase de forma paralela o perpendicular al movimiento de la Tierra. El experimento era lo bastante sensible para detectar —a partir de la interferencia entre dos haces de luz— una diferencia extremadamente pequeña. Sin embargo, los resultados fueron negativos: esto planteó un dilema para la física que no se resolvió hasta que Einstein formuló su teoría de la relatividad en 1905.
3.5
Termodinámica
Una rama de la física que alcanzó pleno desarrollo en el siglo XIX fue la termodinámica. En primer lugar aclaró los conceptos de calor y temperatura, proporcionando definiciones coherentes y demostrando cómo podían relacionarse éstas con los conceptos de trabajo y energía, que hasta entonces tenían un carácter puramente mecánico. Véase también Transferencia de calor.
3.5.1
Calor y temperatura
Cuando una persona toca un cuerpo caliente y otro frío experimenta sensaciones diferentes: esto llevó al concepto cualitativo y subjetivo de temperatura. La adición de calor a un cuerpo lleva a un aumento de su temperatura (mientras no se produzca fusión o vaporización); cuando se ponen en contacto dos cuerpos a temperaturas diferentes, se produce un flujo de calor del más caliente al más frío hasta que se igualan sus temperaturas y se alcanza el equilibrio térmico. Para llegar a una medida de la temperatura, los científicos aprovecharon la observación de que la adición o sustracción de calor produce un cambio en alguna propiedad bien definida del cuerpo. Por ejemplo, la adición de calor a una columna de líquido mantenida a presión constante aumenta la longitud de la columna, mientras que el calentamiento de un gas confinado en un recipiente aumenta su presión. Esto hace que la temperatura pueda medirse a partir de otra propiedad física (por ejemplo, la longitud de la columna de mercurio en un termómetro) siempre que se mantengan constantes las otras propiedades relevantes. La relación matemática entre las propiedades físicas relevantes de un cuerpo o sistema y su temperatura se conoce como ecuación de estado. Por ejemplo, en los gases llamados ideales, hay una relación sencilla entre la presión p, el volumen V, el número de moles n y la temperatura absoluta T, dada por la ecuación pV = nRTdonde R es una constante igual para todos los gases. La ley de Boyle-Mariotte, llamada así en honor al físico y químico británico Robert Boyle y al físico francés Edme Mariotte, y la ley de Charles y Gay-Lussac, llamada así en honor a los físicos y químicos franceses Joseph Louis Gay-Lussac y Jacques Alexandre César Charles, están contenidas en esa ecuación de estado (véase Gas).
Hasta bien entrado el siglo XIX se consideraba que el calor era un fluido sin masa, el llamado “calórico”, que estaba contenido en la materia y podía introducirse en un cuerpo o extraerse del mismo. Aunque la teoría del calórico explicaba las cuestiones básicas de termometría y calorimetría, no lograba explicar satisfactoriamente muchas observaciones realizadas a principios del siglo XIX. La primera relación cuantitativa entre el calor y otras formas de energía fue observada en 1798 por el físico y estadista estadounidense de origen inglés Benjamin Thompson, conde de Rumford, que observó que el calor producido al taladrar el ánima de un cañón era aproximadamente proporcional al trabajo empleado (en mecánica, el trabajo es el producto de la fuerza que actúa sobre un cuerpo por la distancia recorrida por el cuerpo en la dirección de esta fuerza durante su aplicación).
3.5.2
El primer principio de la termodinámica
A mediados del siglo XIX, el físico alemán Hermann Ludwig von Helmholtz y el matemático y físico británico lord Kelvin explicaron la equivalencia entre calor y trabajo. Esta equivalencia significa que la realización de trabajo sobre un sistema puede producir el mismo efecto que la adición de calor. Por ejemplo, se puede lograr el mismo aumento de temperatura en un líquido contenido en un recipiente suministrándole calor o realizando la cantidad de trabajo apropiada, haciendo girar una rueda de paletas dentro del recipiente. El valor numérico de esta equivalencia, el llamado “equivalente mecánico del calor”, fue determinado en experimentos realizados entre 1840 y 1849 por el físico británico James Prescott Joule.
Con ello quedó establecido que la realización de trabajo sobre un sistema y la adición de calor al mismo son formas equivalentes de transferir energía al sistema. Por tanto, la cantidad de energía añadida como calor o trabajo debe aumentar la energía interna del sistema, que a su vez determina la temperatura. Si la energía interna no varía, la cantidad de trabajo realizado sobre un sistema debe ser igual al calor desprendido por el mismo. Esto constituye el primer principio de la termodinámica, que expresa la conservación de la energía. Esta energía interna sólo pudo relacionarse con la suma de las energías cinéticas de todas las partículas del sistema cuando se comprendió mejor la actividad de los átomos y moléculas dentro de un sistema.
3.5.3
El segundo principio de la termodinámica
El primer principio indica que la energía se conserva en cualquier interacción entre un sistema y su entorno, pero no pone limitaciones a las formas de intercambio de energía térmica y mecánica. El primero en formular el principio de que los intercambios de energía se producen globalmente en una dirección determinada fue el físico e ingeniero militar francés Sadi Carnot, quien en 1824 mostró que una máquina térmica (un dispositivo que puede producir trabajo de forma continua a partir del intercambio de calor con su entorno) necesita un cuerpo caliente como fuente de calor y un cuerpo frío para absorber el calor desprendido. Cuando la máquina realiza trabajo hay que transferir calor del cuerpo caliente al cuerpo frío; para que ocurra lo contrario hay que realizar trabajo mecánico (o eléctrico). Por ejemplo, en un refrigerador que funciona de forma continua, la absorción de calor del cuerpo de baja temperatura (el espacio que se quiere refrigerar) exige realizar trabajo (por lo general en forma eléctrica) y desprender calor al entorno (a través de aletas o rejillas de refrigeración situadas en la parte trasera del aparato). Estas ideas, basadas en los conceptos de Carnot, fueron formuladas de forma rigurosa como segundo principio de la termodinámica por el físico matemático alemán Rudolf Emanuel Clausius y lord Kelvin en formas diversas aunque equivalentes. Una de estas formulaciones es que el calor no puede fluir de un cuerpo frío a un cuerpo caliente sin que se realice trabajo.
Del segundo principio se deduce que, en un sistema aislado (en el que no existen interacciones con el entorno), las partes internas que se encuentran a temperaturas distintas siempre tienden a igualar sus temperaturas y alcanzar así el equilibrio. Este principio también puede aplicarse a otras propiedades internas inicialmente no uniformes. Por ejemplo, si se vierte leche en una taza de café, las dos sustancias se mezclan hasta hacerse inseparables e indiferenciables. Por lo tanto, un estado inicial ordenado, con componentes diferenciados, se convierte en un estado mezclado o desordenado. Estas ideas se pueden expresar a partir de una propiedad termodinámica denominada entropía (enunciada por primera vez por Clausius), que mide lo cerca que está un sistema del equilibrio, es decir, del desorden interno perfecto. La entropía de un sistema aislado, y del Universo en su conjunto, sólo puede aumentar, y cuando se alcanza finalmente el equilibrio ya no son posibles cambios internos de ningún tipo. Cuando se aplica al conjunto del Universo, este principio sugiere que la temperatura de todo el cosmos acabará siendo uniforme, con lo que se producirá la llamada “muerte térmica” del Universo.
Sin embargo, la entropía puede disminuirse localmente mediante acciones externas. Esto ocurre en las máquinas (por ejemplo un refrigerador, en el que se reduce la entropía del espacio enfriado) y en los organismos vivos. Por otra parte, este aumento local del orden sólo es posible mediante un incremento de la entropía del entorno, donde necesariamente tiene que aumentar el desorden.
Este aumento continuado de la entropía está relacionado con la irreversibilidad que se observa en los procesos macroscópicos. Si un proceso fuera reversible espontáneamente —es decir, si después de realizado el proceso, tanto el sistema como el entorno pudieran regresar a su estado inicial— la entropía permanecería constante, lo que violaría el segundo principio. Aunque los procesos macroscópicos observados en la experiencia cotidiana son irreversibles, no ocurre lo mismo con los procesos microscópicos. Por ejemplo, las reacciones químicas entre moléculas individuales no se rigen por el segundo principio de la termodinámica, que sólo es válido para conjuntos macroscópicos.
A partir de la formulación del segundo principio se produjeron otros avances en la termodinámica, cuyas aplicaciones se extendieron más allá de la física y alcanzaron a la química y la ingeniería. La mayor parte de la ingeniería química, toda la ingeniería energética, la tecnología de acondicionamiento de aire y la física de bajas temperaturas son algunos de los campos que deben su base teórica a la termodinámica y a los logros posteriores de científicos como Maxwell, el físico estadounidense Willard Gibbs, el químico físico alemán Walther Nernst o el químico estadounidense de origen noruego Lars Onsager.

No hay comentarios:

Publicar un comentario

Entradas populares

Me gusta

Seguidores