Patrocinador1

El invento del Plásticos





El color del plástico
El puesto de un mercado en la ciudad india de Bombay ofrece una multicolor variedad de productos de plástico. Los plásticos son resinas sintéticas cuyas moléculas son polímeros, grandes cadenas orgánicas. Los plásticos son duraderos y ligeros. El petróleo se refina para formar moléculas orgánicas pequeñas, llamadas monómeros, que luego se combinan para formar polímeros resinosos, que se moldean o extruyen para fabricar productos de plástico.

Plásticos, materiales polímeros orgánicos (compuestos formados por moléculas orgánicas gigantes) que son plásticos, es decir, que pueden deformarse hasta conseguir una forma deseada por medio de extrusión, moldeo o hilado. Las moléculas pueden ser de origen natural, por ejemplo la celulosa, la cera y el caucho (hule) natural, o sintéticas, como el polietileno y el nailon.
Los plásticos se caracterizan por una alta relación resistencia/densidad, unas propiedades excelentes para el aislamiento térmico y eléctrico y una buena resistencia a los ácidos, álcalis y disolventes. Las enormes moléculas de las que están compuestos pueden ser lineales, ramificadas o entrecruzadas, dependiendo del tipo de plástico. Las moléculas lineales y ramificadas son termoplásticas (se ablandan con el calor), mientras que las entrecruzadas son termoestables (no se ablandan con el calor).
2
HISTORIA
El desarrollo de estas sustancias se inició en 1860, cuando el fabricante estadounidense de bolas de billar Phelan and Collander ofreció una recompensa de 10.000 dólares a quien consiguiera un sustituto aceptable del marfil natural. Una de las personas que optaron al premio fue el inventor estadounidense Wesley Hyatt, quien desarrolló un método de procesamiento a presión de la piroxilina, un nitrato de celulosa de baja nitración tratado previamente con alcanfor y una cantidad mínima de alcohol. Si bien Hyatt no ganó el premio, su producto, patentado con el nombre de celuloide, se utilizó para fabricar diferentes objetos, desde placas dentales a cuellos de camisa. El celuloide tuvo un notable éxito comercial a pesar de ser inflamable y deteriorarse al exponerlo a la luz.
Durante las décadas siguientes aparecieron de forma gradual más tipos de plásticos. Se inventaron los primeros plásticos totalmente sintéticos: un grupo de plásticos termoestables o resinas desarrollado hacia 1906 por el químico estadounidense de origen belga Leo Hendrik Baekeland, y comercializado con el nombre de baquelita. Entre los productos desarrollados durante este periodo están los polímeros naturales alterados, como el rayón, fabricado a partir de la celulosa, del nitrato de celulosa o del etanoato de celulosa.
2.1
El avance de la química de los plásticos
En 1920 se produjo un acontecimiento que marcaría la pauta en el desarrollo de materiales plásticos. El químico alemán Hermann Staudinger aventuró que éstos se componían en realidad de moléculas gigantes o macromoléculas. Los esfuerzos dedicados a probar esta afirmación iniciaron numerosas investigaciones científicas que produjeron enormes avances en esta parte de la química. En las décadas de 1920 y 1930 apareció un buen número de nuevos productos, como el etanoato de celulosa (llamado originalmente acetato de celulosa), utilizado en el moldeo de resinas y fibras, y el policloruro de vinilo (PVC), empleado en tuberías y recubrimientos de vinilo.
Uno de los plásticos más populares desarrollados durante este periodo es el metacrilato de metilo polimerizado, que se comercializó en Gran Bretaña con el nombre de Perspex y como Lucite en Estados Unidos, y que se conoce en español como plexiglás. Este material tiene unas propiedades ópticas excelentes; puede utilizarse para gafas y lentes, o en el alumbrado público o publicitario. Las resinas de poliestireno, comercializadas alrededor de 1937, se caracterizan por su alta resistencia a la alteración química y mecánica a bajas temperaturas y por su escasa absorción de agua. Estas propiedades hacen del poliestireno un material adecuado para aislamientos y accesorios utilizados a bajas temperaturas, como en instalaciones de refrigeración y en aeronaves destinadas a los vuelos a gran altura. El PTFE (politetrafluoretileno), sintetizado por primera vez en 1938, se comercializó con el nombre de teflón en 1950. Otro descubrimiento fundamental en la década de 1930 fue la síntesis del nailon.
2.2
La II Guerra Mundial
Durante la II Guerra Mundial, tanto los aliados como las fuerzas del Eje sufrieron reducciones en sus suministros de materias primas. La industria de los plásticos demostró ser una fuente inagotable de sustitutos aceptables. Alemania, por ejemplo, que perdió sus fuentes naturales de látex, inició un gran programa que llevó al desarrollo de un caucho sintético. La entrada de Japón en el conflicto mundial cortó los suministros de caucho natural, seda y muchos metales procedentes de Asia a Estados Unidos. La respuesta estadounidense fue la intensificación del desarrollo y la producción de plásticos. El nailon se convirtió en una de las fuentes principales de fibras textiles, los poliésteres se utilizaron en la fabricación de blindajes y otros materiales bélicos, y se produjeron en grandes cantidades varios tipos de caucho sintético.
2.3
El auge de la posguerra
Giulio Natta
El químico italiano Giulio Natta fue galardonado con el Premio Nobel de Química en 1963 por sus investigaciones sobre los polímeros. Desarrolló el polipropileno utilizando un catalizador organometálico.

Durante los años de la posguerra se mantuvo el elevado ritmo de los descubrimientos y desarrollos de la industria de los plásticos. Tuvieron especial interés los avances en plásticos, como los policarbonatos, los acetatos y las poliamidas. Se utilizaron otros materiales sintéticos en lugar de los metales en componentes para maquinaria, cascos de seguridad, aparatos sometidos a altas temperaturas y muchos otros productos empleados en lugares con condiciones ambientales extremas. En 1953, el químico alemán Karl Ziegler desarrolló el polietileno, y en 1954 el italiano Giulio Natta desarrolló el polipropileno, que son los dos plásticos más utilizados en la actualidad. En 1963, estos dos científicos compartieron el Premio Nobel de Química por sus estudios acerca de los polímeros.
3
TIPOS DE PLÁSTICOS
Se puede establecer la siguiente clasificación de los plásticos: por el proceso de polimerización, por la forma en que pueden procesarse y por su naturaleza química.
3.1
Polimerización
Procesado de plásticos
En esta fábrica, el plástico pasa por una serie de rodillos de calentado y se transforma en láminas finas. El plástico se moldea durante su producción, porque una vez endurecido no puede fundirse y modelarse de nuevo. Los plásticos se utilizan cada vez más, porque son relativamente duraderos, baratos y versátiles.

Por el proceso de polimerización, los plásticos se pueden clasificar en polímeros de condensación y polímeros de adición. Las reacciones de condensación producen diferentes longitudes de polímeros, mientras que las reacciones de adición producen longitudes específicas. Por otro lado, las polimerizaciones por condensación generan pequeñas cantidades de subproductos, como agua, amoníaco y etilenglicol, mientras las reacciones de adición no producen ningún subproducto. Algunos polímeros típicos de condensación son el nailon, los poliuretanos y los poliésteres. Entre los polímeros de adición se encuentran el polietileno, el polipropileno, el policloruro de vinilo y el poliestireno. Las masas moleculares medias de los polímeros de adición son generalmente mayores que las de los polímeros de condensación.
3.2
Posibilidades de procesado
El plástico se procesa de formas distintas, según sea termoplástico o termoestable. Los termoplásticos, formados por polímeros lineales o ramificados, pueden fundirse. Se ablandan cuando se calientan y se endurecen al enfriarse. Lo mismo ocurre con los plásticos termoestables que están poco entrecruzados. No obstante, la mayoría de los termoestables ganan en dureza cuando se calientan; el entrecruzado final que los vuelve rígidos se produce cuando se ha dado forma al plástico.
3.3
Naturaleza química
La naturaleza química de un plástico depende del monómero (la unidad repetitiva) que compone la cadena del polímero. Por ejemplo, las poliolefinas están compuestas de monómeros de olefinas, que son hidrocarburos de cadena abierta con al menos un doble enlace. El polietileno es una poliolefina. Su monómero es el etileno. Otros tipos de polímeros son los acrílicos (como el polimetacrilato), los poliestirenos, los halogenuros de vinilo (como el policloruro de vinilo), los poliésteres, los poliuretanos, las poliamidas (como el nailon), los poliéteres, los acetatos y las resinas fenólicas, celulósicas o de aminas.
4
FABRICACIÓN
Gránulos de plástico y extrusión
Al principio del proceso de fabricación se remueven y funden pequeños gránulos de nailon (una resina sintética). Una vez fundida, la mezcla de plástico azul recibirá la forma deseada mediante un proceso llamado extrusión.

La fabricación de los plásticos y sus manufacturados implica cuatro pasos básicos: obtención de las materias primas, síntesis del polímero básico, obtención del polímero como un producto utilizable industrialmente y moldeo o deformación del plástico hasta su forma definitiva.
4.1
Materias primas
En un principio, la mayoría de los plásticos se fabricaban a partir de resinas de origen vegetal, como la celulosa (del algodón), el furfural (de la cáscara de la avena), aceites de semillas y derivados del almidón o del carbón. La caseína de la leche era uno de los materiales no vegetales utilizados. A pesar de que la producción del nailon se basaba originalmente en el carbón, el aire y el agua, y de que el nailon 11 se fabrica todavía con semillas de ricino, la mayoría de los plásticos se elaboran hoy con derivados del petróleo. Las materias primas derivadas del petróleo son tan baratas como abundantes. No obstante, dado que las existencias mundiales de petróleo tienen un límite, se están investigando otras fuentes de materias primas, como la gasificación del carbón.
4.2
Síntesis del polímero
El primer paso en la fabricación de un plástico es la polimerización. Como se comentaba anteriormente, los dos métodos básicos de polimerización son las reacciones de condensación y las de adición. Estos métodos pueden llevarse a cabo de varias maneras. En la polimerización en masa se polimeriza sólo el monómero, por lo general en una fase gaseosa o líquida, si bien se realizan también algunas polimerizaciones en estado sólido. Mediante la polimerización en disolución se forma una emulsión que se coagula seguidamente. En la polimerización por interfase los monómeros se disuelven en dos líquidos inmiscibles y la polimerización tiene lugar en la interfase entre los dos líquidos.
4.3
Aditivos
Con frecuencia se utilizan aditivos químicos para conseguir una propiedad determinada. Por ejemplo, los antioxidantes protegen el polímero de degradaciones químicas causadas por el oxígeno o el ozono. De una forma parecida, los estabilizadores lo protegen de la intemperie. Los plastificantes producen un polímero más flexible, los lubricantes reducen la fricción y los pigmentos colorean los plásticos. Algunas sustancias ignífugas y antiestáticas se utilizan también como aditivos.
Muchos plásticos se fabrican en forma de material compuesto, lo que implica la adición de algún material de refuerzo (normalmente fibras de vidrio o de carbono) a la matriz de la resina plástica. Los materiales compuestos tienen la resistencia y la estabilidad de los metales, pero por lo general son más ligeros. Las espumas plásticas, compuestas de plástico y gas, proporcionan una masa de gran tamaño pero muy ligera.
4.4
Forma y acabado
Extrusión por soplado
En una máquina de extrusión se puede realizar un moldeo por soplado que se basa en la utilización de un fuelle industrial para dilatar un tubo caliente de plástico y convertirlo en una bolsa ligera de gran resistencia. El aire infla el tubo de plástico hasta conseguir una bolsa con la forma, el tamaño y grosor deseados.

Las técnicas empleadas para conseguir la forma final y el acabado de los plásticos dependen de tres factores: tiempo, temperatura y deformación. La naturaleza de muchos de estos procesos es cíclica, si bien algunos pueden clasificarse como continuos o semicontinuos.
Una de las operaciones más comunes es la extrusión. Una máquina de extrusión consiste en un aparato que bombea el plástico a través de un molde con la forma deseada. Los productos extrusionados, como por ejemplo los tubos, tienen una sección con forma regular. La máquina de extrusión también realiza otras operaciones, como moldeo por soplado o moldeo por inyección.
Otros procesos utilizados son el moldeo por compresión, en el que la presión fuerza al plástico a adoptar una forma concreta, y el moldeo por transferencia, en el que un pistón introduce el plástico fundido a presión en un molde. El calandrado es otra técnica mediante la que se forman láminas de plástico. Algunos plásticos, y en particular los que tienen una elevada resistencia a la temperatura, requieren procesos de fabricación especiales. Por ejemplo, el politetrafluoretileno tiene una viscosidad de fundición tan alta que debe ser prensado para conseguir la forma deseada, y sinterizado, es decir, expuesto a temperaturas extremadamente altas que convierten el plástico en una masa cohesionada sin necesidad de fundirlo.
5
APLICACIONES
Los plásticos tienen cada vez más aplicaciones en los sectores industriales y de consumo.
5.1
Empaquetado
Una de las aplicaciones principales del plástico es el empaquetado. Se comercializa una buena cantidad de polietileno de baja densidad en forma de rollos de plástico transparente para envoltorios. El polietileno de alta densidad se usa para películas plásticas más gruesas, como la que se emplea en las bolsas de basura. Se utilizan también en el empaquetado: el polipropileno, el poliestireno, el policloruro de vinilo (PVC) y el policloruro de vinilideno. Este último se usa en aplicaciones que requieren estanqueidad, ya que no permite el paso de gases (por ejemplo, el oxígeno) hacia dentro o hacia fuera del paquete. De la misma forma, el polipropileno es una buena barrera contra el vapor de agua; tiene aplicaciones domésticas y se emplea en forma de fibra para fabricar alfombras y sogas.
5.2
Construcción
Aislamiento térmico
El aislante de poliestireno instalado en este edificio está lleno de pequeñas burbujas de aire que dificultan el flujo de calor. La capa exterior refleja la luz, lo que aísla aún más el interior del edificio.

La construcción es otro de los sectores que más utilizan todo tipo de plásticos, incluidos los de empaquetado descritos anteriormente. El polietileno de alta densidad se usa en tuberías, del mismo modo que el PVC. Éste se emplea también en forma de láminas como material de construcción. Muchos plásticos se utilizan para aislar cables e hilos, y el poliestireno aplicado en forma de espuma sirve para aislar paredes y techos. También se hacen con plástico marcos para puertas, ventanas y techos, molduras y otros artículos.
5.3
Otras aplicaciones
Otros sectores industriales, en especial la fabricación de motores, dependen también de estos materiales. Algunos plásticos muy resistentes se utilizan para fabricar piezas de motores, como colectores de toma de aire, tubos de combustible, botes de emisión, bombas de combustible y aparatos electrónicos. Muchas carrocerías de automóviles están hechas con plástico reforzado con fibra de vidrio.
Los plásticos se emplean también para fabricar carcasas para equipos de oficina, dispositivos electrónicos, accesorios pequeños y herramientas. Entre las aplicaciones del plástico en productos de consumo se encuentran los juguetes, las maletas y artículos deportivos.
6
SALUD Y RIESGOS PARA EL ENTORNO
Dado que los plásticos son relativamente inertes, los productos terminados no representan ningún peligro para el fabricante o el usuario. Sin embargo, se ha demostrado que algunos monómeros utilizados en la fabricación de plásticos producen cáncer. De igual forma, el benceno, una materia prima en la fabricación del nailon, es un carcinógeno. Los problemas de la industria del plástico son similares a los de la industria química en general.
La mayoría de los plásticos sintéticos no pueden ser degradados por el entorno. Al contrario que la madera, el papel, las fibras naturales o incluso el metal y el vidrio, no se oxidan ni se descomponen con el tiempo. Se han desarrollado algunos plásticos degradables, pero ninguno ha demostrado ser válido para las condiciones requeridas en la mayoría de los vertederos de basuras. En definitiva, la eliminación de los plásticos representa un problema medioambiental. El método más práctico para solucionar este problema es el reciclaje, que se utiliza, por ejemplo, con las botellas de bebidas gaseosas fabricadas con tereftalato de polietileno. En este caso, el reciclaje es un proceso bastante sencillo. Se están desarrollando soluciones más complejas para el tratamiento de los plásticos mezclados de la basura, que constituyen una parte muy visible, si bien relativamente pequeña, de los residuos sólidos.

No hay comentarios:

Publicar un comentario

Entradas populares

Me gusta

Seguidores