Usos de los dispositivos electrónicos
Los dispositivos electrónicos se utilizan como herramientas en muchas áreas de la investigación avanzada. En la ilustración vemos un microscopio de electrones de barrido, que emplea electrones para generar una imagen muy ampliada en una pantalla de computadora.
Electrónica, campo de la ingeniería y de la física aplicada relativo al diseño y aplicación de dispositivos, por lo general circuitos electrónicos, cuyo funcionamiento depende del flujo de electrones para la generación, transmisión, recepción y almacenamiento de información. Esta información puede consistir en voz o música (señales de voz) en un receptor de radio, en una imagen en una pantalla de televisión, o en números u otros datos en un ordenador o computadora.
Los circuitos electrónicos ofrecen diferentes funciones para procesar esta información, incluyendo la amplificación de señales débiles hasta un nivel utilizable; la generación de ondas de radio; la extracción de información, como por ejemplo la recuperación de la señal de sonido de una onda de radio (demodulación); el control, como en el caso de la superposición de una señal de sonido a ondas de radio (modulación), y operaciones lógicas, como los procesos electrónicos que tienen lugar en las computadoras.
ANTECEDENTES HISTÓRICOS |
La introducción de los tubos de vacío a comienzos del siglo XX propició el rápido crecimiento de la electrónica moderna. Con estos dispositivos se hizo posible la manipulación de señales, algo que no podía realizarse en los antiguos circuitos telegráficos y telefónicos, ni con los primeros transmisores que utilizaban chispas de alta tensión para generar ondas de radio. Por ejemplo, con los tubos de vacío se pudieron amplificar las señales de radio y de sonido débiles, y además podían superponerse señales de sonido a las ondas de radio. El desarrollo de una amplia variedad de tubos, diseñados para funciones especializadas, posibilitó el rápido avance de la tecnología de comunicación radial antes de la II Guerra Mundial, y el desarrollo de las primeras computadoras, durante la guerra y poco después de ella.
Hoy día, el transistor, inventado en 1948, ha reemplazado casi completamente al tubo de vacío en la mayoría de sus aplicaciones. Al incorporar un conjunto de materiales semiconductores y contactos eléctricos, el transistor permite las mismas funciones que el tubo de vacío, pero con un coste, peso y potencia más bajos, y una mayor fiabilidad. Los progresos subsiguientes en la tecnología de semiconductores, atribuible en parte a la intensidad de las investigaciones asociadas con la iniciativa de exploración del espacio, llevó al desarrollo, en la década de 1970, del circuito integrado. Estos dispositivos pueden contener centenares de miles de transistores en un pequeño trozo de material, permitiendo la construcción de circuitos electrónicos complejos, como los de los microordenadores o microcomputadoras, equipos de sonido y vídeo, y satélites de comunicaciones.
COMPONENTES ELECTRÓNICOS |
Diodo emisor de luz
Un diodo es un componente electrónico a través del cual la corriente pasa en un solo sentido. Los diodos emisores de luz (LED, acrónimo de Light-Emitting Diode) son semiconductores que generan luz al pasar una corriente a través de ellos. Se emplean en numerosos dispositivos comunes, como el sintonizador de un aparato de radio. Una disposición de siete LED en forma de ocho puede utilizarse para presentar cualquier número del 0 al 9. Esta disposición suele emplearse en calculadoras y relojes digitales.
Los circuitos electrónicos constan de componentes electrónicos interconectados. Estos componentes se clasifican en dos categorías: activos o pasivos. Entre los pasivos se incluyen los reóstatos, los condensadores y los inductores. Los considerados activos incluyen las baterías (o pilas), los generadores, los tubos de vacío y los transistores.
Tubos de vacío |
Amplificador triodo
Un circuito amplificador triodo consta además de un triodo, de un reóstato de carga, baterías y una fuente de tensión variable. El triodo es un tubo de cristal al vacío que contiene un cátodo C, un ánodo A y una rejilla de control G. La batería A calienta el filamento que hay en el cátodo, de manera que los electrones pueden moverse libremente. La batería B mantiene una diferencia de potencial entre el cátodo y el ánodo, y suministra la energía que los electrones ganan al fluir desde el cátodo hacia el ánodo. Este flujo se puede controlar aplicando una tensión negativa a la rejilla con la batería C. Cuanto mayor sea la tensión negativa de la rejilla, menos electrones fluirán desde el cátodo hacia el ánodo. Pequeños cambios en la tensión de la rejilla provenientes de una señal de radio o de sonido (fuente S) pueden producir grandes variaciones en el flujo de corriente desde el cátodo al ánodo, y dentro del resto del circuito.
Un tubo de vacío consiste en una cápsula de vidrio de la que se ha extraído el aire, y que lleva en su interior varios electrodos metálicos. Un tubo sencillo de dos elementos (diodo) está formado por un cátodo y un ánodo, este último conectado al terminal positivo de una fuente de alimentación. El cátodo (un pequeño tubo metálico que se calienta mediante un filamento) libera electrones que migran hacia él (un cilindro metálico en torno al cátodo, también llamado placa). Si se aplica una tensión alterna al ánodo, los electrones sólo fluirán hacia el ánodo durante el semiciclo positivo; durante el ciclo negativo de la tensión alterna, el ánodo repele los electrones, impidiendo que cualquier corriente pase a través del tubo. Los diodos conectados de tal manera que sólo permiten los semiciclos positivos de una corriente alterna (c.a.) se denominan tubos rectificadores y se emplean en la conversión de corriente alterna a corriente continua (c.c.) (véase Electricidad). Al insertar una rejilla, formada por un hilo metálico en espiral, entre el cátodo y el ánodo, y aplicando una tensión negativa a dicha rejilla, es posible controlar el flujo de electrones. Si la rejilla es negativa, los repele y sólo una pequeña fracción de los electrones emitidos por el cátodo puede llegar al ánodo. Este tipo de tubo, denominado triodo, se puede utilizar como amplificador. Las pequeñas variaciones de la tensión que se producen en la rejilla, como las generadas por una señal de radio o de sonido, pueden provocar grandes variaciones en el flujo de electrones desde el cátodo hacia el ánodo y, en consecuencia, en el sistema de circuitos conectado al ánodo.
Transistores |
Placa de circuitos y transistores
La imagen ampliada de la placa de circuitos de un detector de humo muestra sus componentes, entre los que se incluyen transistores, reóstatos, condensadores, diodos y bobinas. Los transistores que permiten el funcionamiento del circuito están encerrados en unos contenedores redondos plateados. Los transistores pueden efectuar diversas funciones, sirviendo, por ejemplo, de amplificadores, interruptores y osciladores. Cada transistor consta de un pequeño trozo de silicio al que se le han aplicado átomos de impurezas para crear semiconductores de tipo n y de tipo p. Inventados en 1948, los transistores son un componente fundamental en casi todos los dispositivos electrónicos modernos.
Los transistores se componen de semiconductores. Se trata de materiales, como el silicio o el germanio, dopados (es decir, se les han incrustado pequeñas cantidades de materias extrañas), de manera que se produce un exceso o una carencia de electrones libres. En el primer caso, se dice que el semiconductor es del tipo n, y en el segundo, que es del tipo p. Combinando materiales del tipo n y del tipo p se puede producir un diodo. Cuando éste se conecta a una batería de manera tal que el material tipo p es positivo y el material tipo n es negativo, los electrones son repelidos desde el terminal negativo de la batería y pasan, sin ningún obstáculo, a la región p, que carece de electrones. Con la batería invertida, los electrones que llegan al material p pueden pasar sólo con muchas dificultades hacia el material n, que ya está lleno de electrones libres, en cuyo caso la corriente es prácticamente cero.
El transistor bipolar fue inventado en 1948 para sustituir al tubo de vacío triodo. Está formado por tres capas de material dopado, que forman dos uniones pn (bipolares) con configuraciones pnp o npn. Una unión está conectada a la batería para permitir el flujo de corriente (polarización negativa frontal, o polarización directa), y la otra está conectada a una batería en sentido contrario (polarización inversa). Si se varía la corriente en la unión de polarización directa mediante la adición de una señal, la corriente de la unión de polarización inversa del transistor variará en consecuencia. El principio se puede utilizar para construir amplificadores en los que una pequeña señal aplicada a la unión de polarización directa provocará un gran cambio en la corriente de la unión de polarización inversa.
Otro tipo de transistor es el de efecto campo (FET, acrónimo inglés de Field-Effect Transistor), que funciona sobre la base del principio de repulsión o de atracción de cargas debido a la superposición de un campo eléctrico. La amplificación de la corriente se consigue de modo similar al empleado en el control de rejilla de un tubo de vacío. Los transistores de efecto campo funcionan de forma más eficaz que los bipolares, ya que es posible controlar una señal grande con una cantidad de energía muy pequeña.
Circuitos integrados |
Placa de circuitos de computadora
Los circuitos integrados han hecho posible la fabricación del microordenador o microcomputadora. Sin ellos, los circuitos individuales y sus componentes ocuparían demasiado espacio como para poder conseguir un diseño compacto. También llamado chip, un circuito integrado típico consta de varios elementos como reóstatos, condensadores y transistores integrados en una única pieza de silicio. En los más pequeños, los elementos del circuito pueden tener un tamaño de apenas unos centenares de átomos, lo que ha permitido crear sofisticadas computadoras del tamaño de un cuaderno. Una placa de circuitos de una computadora típica incluye numerosos circuitos integrados interconectados entre sí.
La mayoría de los circuitos integrados son pequeños trozos, o chips, de silicio, de entre 2 y 4 mm2, sobre los que se fabrican los transistores. La fotolitografía permite al diseñador crear centenares de miles de transistores en un solo chip situando de forma adecuada las numerosas regiones tipo n y p. Durante la fabricación, estas regiones son interconectadas mediante conductores minúsculos, a fin de producir circuitos especializados complejos. Estos circuitos integrados son llamados monolíticos por estar fabricados sobre un único cristal de silicio. Los chips requieren mucho menos espacio y potencia, y su fabricación es más barata que la de un circuito equivalente compuesto por transistores individuales.
Reóstatos |
Al conectar una batería a un material conductor, una determinada cantidad de corriente fluirá a través de dicho material. Esta corriente depende de la tensión de la batería, de las dimensiones de la muestra y de la conductividad del propio material. Los reóstatos de resistencia conocida se emplean para controlar la corriente en los circuitos electrónicos. Se elaboran con mezclas de carbono, láminas metálicas o hilo de resistencia, y disponen de dos cables de conexión. Los reóstatos variables, con un brazo de contacto deslizante y ajustable, se suelen utilizar para controlar el volumen de aparatos de radio y televisión.
Condensadores |
Los condensadores están formados por dos placas metálicas separadas por un material aislante. Si se conecta una batería a ambas placas, durante un breve tiempo fluirá una corriente eléctrica que se acumulará en cada una de ellas. Si se desconecta la batería, el condensador conserva la carga y la tensión asociada a la misma. Las tensiones rápidamente cambiantes, como las provocadas por una señal de sonido o de radio, generan mayores flujos de corriente hacia y desde las placas; entonces, el condensador actúa como conductor de la corriente alterna. Este efecto se puede utilizar, por ejemplo, para separar una señal de sonido o de radio de una corriente continua, a fin de conectar la salida de una fase de amplificación a la entrada de la siguiente.
Inductores |
Los inductores consisten en un hilo conductor enrollado en forma de bobina. Al pasar una corriente a través de la bobina, alrededor de la misma se crea un campo magnético que tiende a oponerse a los cambios bruscos de la intensidad de la corriente (véase Inducción). Al igual que un condensador, un inductor se puede usar para diferenciar entre señales rápida y lentamente cambiantes. Al utilizar un inductor conjuntamente con un condensador, la tensión del inductor alcanza un valor máximo a una frecuencia específica que depende de la capacitancia y de la inductancia. Este principio se emplea en los receptores de radio al seleccionar una frecuencia específica mediante un condensador variable.
Dispositivos de detección y transductores |
La medición de magnitudes mecánicas, térmicas, eléctricas y químicas se realiza empleando dispositivos denominados sensores y transductores. El sensor es sensible a los cambios de la magnitud a medir, como una temperatura, una posición o una concentración química. El transductor convierte estas mediciones en señales eléctricas, que pueden alimentar a instrumentos de lectura, registro o control de las magnitudes medidas. Los sensores y transductores pueden funcionar en ubicaciones alejadas del observador, así como en entornos inadecuados o impracticables para los seres humanos.
Algunos dispositivos actúan de forma simultánea como sensor y transductor. Un termopar consta de dos uniones de diferentes metales que generan una pequeña tensión que depende del diferencial térmico entre las uniones (véase Termoelectricidad). El termistor es un reóstato especial, cuya resistencia varía según la temperatura. Un reóstato variable puede convertir el movimiento mecánico en señal eléctrica. Para medir distancias se emplean condensadores de diseño especial, y para detectar la luz se utilizan fotocélulas (véase Célula fotoeléctrica). Para medir velocidades, aceleraciones o flujos de líquidos se recurre a otro tipo de dispositivos. En la mayoría de los casos, la señal eléctrica es débil y debe ser amplificada por un circuito electrónico.
CIRCUITOS DE ALIMENTACIÓN ELÉCTRICA |
La mayoría de los equipos electrónicos requieren tensiones de c.c. para su funcionamiento. Estas tensiones pueden ser suministradas por baterías o por fuentes de alimentación internas que convierten la corriente alterna, que se puede obtener de la red eléctrica que llega a cada vivienda, en tensiones reguladas de c.c. El primer elemento de una fuente de alimentación de c.c. interna es el transformador, que eleva o disminuye la tensión de entrada a un nivel adecuado para el funcionamiento del equipo. La función secundaria del transformador es servir como aislamiento de masa (conexión a tierra) eléctrica del dispositivo a fin de reducir posibles peligros de electrocución. A continuación del transformador se sitúa un rectificador, que suele ser un diodo. En el pasado se utilizaban diodos de vacío y una amplia variedad de diferentes materiales (cristales de germanio o sulfato de cadmio) en los rectificadores de baja potencia empleados en los equipos electrónicos. En la actualidad se emplean casi exclusivamente rectificadores de silicio debido a su bajo coste y alta fiabilidad.
Las fluctuaciones y ondulaciones superpuestas a la tensión de c.c. rectificada (percibidas como un zumbido en los amplificadores de sonido defectuosos) pueden filtrarse mediante un condensador. Cuanto más grande sea el condensador, menor será el nivel de fluctuación de la tensión. Es posible alcanzar un control más exacto sobre los niveles y fluctuaciones de tensión mediante un regulador de tensión, que también consigue que las tensiones internas sean independientes de las fluctuaciones que se puedan encontrar en un artefacto eléctrico. Un sencillo regulador de tensión que se utiliza a menudo es el diodo de Zener, formado por un diodo de unión pn de estado sólido que actúa como aislante hasta una tensión predeterminada. Por encima de dicha tensión, se convierte en un conductor que deriva los excesos de tensión. Por lo general, los reguladores de tensión más sofisticados se construyen como circuitos integrados.
CIRCUITOS AMPLIFICADORES |
Los amplificadores electrónicos se utilizan sobre todo para aumentar la tensión, la corriente o la potencia de una señal. Los amplificadores lineales incrementan la señal sin distorsionarla (o distorsionándola mínimamente), de manera que la salida es proporcional a la entrada. Los amplificadores no lineales permiten generar un cambio considerable en la forma de onda de la señal. Los amplificadores lineales se utilizan para señales de sonido y vídeo, mientras que los no lineales se emplean en osciladores, dispositivos electrónicos de alimentación, moduladores, mezcladores, circuitos lógicos y demás aplicaciones en las que se requiere una reducción de la amplitud. Aunque los tubos de vacío tuvieron gran importancia en los amplificadores, hoy día se suelen utilizar circuitos de transistores discretos o circuitos integrados.
Amplificadores de sonido |
Los amplificadores de sonido, de uso común en radios, televisiones y grabadoras de cintas, suelen funcionar a frecuencias inferiores a los 20 kilohercios (1 kHz = 1.000 ciclos por segundo). Amplifican la señal eléctrica que, a continuación, se convierte en sonido con un altavoz. Los amplificadores operativos, incorporados en circuitos integrados y formados por amplificadores lineales multifásicos acoplados a la corriente continua, son muy populares como amplificadores de sonido.
Amplificadores de vídeo |
Los amplificadores de vídeo se utilizan principalmente para señales con un rango de frecuencias de hasta 6 megahercios (1 MHz = 1 millón de ciclos por segundo). La señal generada por el amplificador se convierte en la información visual que aparece en la pantalla de televisión, y la amplitud de señal regula el brillo de los puntos que forman la imagen. Para realizar esta función, un amplificador de vídeo debe funcionar en una banda ancha y amplificar de igual manera todas las señales, con baja distorsión. Véase Grabación de vídeo.
Amplificadores de radiofrecuencia |
Estos amplificadores aumentan el nivel de señal de los sistemas de comunicaciones de radio o televisión. Por lo general, sus frecuencias van desde 100 kHz hasta 1 gigahercio (1 GHz = 1.000 millones de ciclos por segundo), y pueden llegar incluso al rango de frecuencias de microondas.
OSCILADORES |
Circuito oscilador
La ilustración presenta el diagrama esquemático simplificado de un circuito oscilador. El circuito sintonizado contiene una bobina inductora L , otra bobina inductora más pequeña L 2 y un condensador C.
Los osciladores constan de un amplificador y de algún tipo de retroalimentación: la señal de salida se reconduce a la entrada del amplificador. Los elementos determinantes de la frecuencia pueden ser un circuito de inductancia-capacitancia sintonizado o un cristal vibrador. Los osciladores controlados por cristal ofrecen mayor precisión y estabilidad. Los osciladores se emplean para producir señales de sonido y de radio con una amplia variedad de usos. Por ejemplo, los osciladores sencillos de radiofrecuencia se emplean en los teléfonos modernos de botones para transmitir datos a la estación telefónica central al marcar un número. Los tonos de sonido generados por los osciladores también se pueden encontrar en relojes despertadores, radios, instrumentos electrónicos, computadoras y sistemas de alarma. Los osciladores de alta frecuencia se emplean en equipos de comunicaciones para controlar las funciones de sintonización y detección de señales. Las emisoras de radio y de televisión utilizan osciladores de alta frecuencia y de gran precisión para generar las frecuencias de transmisión.
CIRCUITOS DE CONMUTACIÓN Y TEMPORIZACIÓN |
Circuitos de lógica digital y de puerta NOR
Los ordenadores o computadoras utilizan la lógica digital para efectuar operaciones. La lógica digital implica tomar sucesivas decisiones de verdadero o falso, que se representan como 1 y 0, respectivamente. Los circuitos lógicos, que están en el corazón de los chips de la computadora, están diseñados para tomar series de este tipo de decisiones a través de juntas denominadas puertas. Éstas están diseñadas y organizadas de tal forma que pueden tomar diferentes tipos de decisiones acerca de las entradas que reciben. Los valores individuales de entrada y de salida son siempre verdaderos o falsos, y se transmiten a través del circuito en forma de diferentes tensiones. Este circuito utiliza 4 puertas NOR, cada una de las cuales adopta la decisión no A no B. La operación NOR da como resultado una salida de 0 cada vez que uno o más de los valores de salida es igual a 1. La tabla muestra los valores de entrada (A, B) y de salida (F) de la puerta NOR. El diagrama del circuito (abajo) muestra la disposición de una puerta NOR y sus componentes, indicando los valores de tensión cuando las entradas son 0,0 y la salida es 1.
Los circuitos de conmutación y temporización, o circuitos lógicos, forman la base de cualquier dispositivo en el que se tengan que seleccionar o combinar señales de manera controlada. Entre los campos de aplicación de estos circuitos se pueden mencionar la conmutación telefónica, las transmisiones por satélite y el funcionamiento de las computadoras digitales.
La lógica digital es un proceso racional para adoptar sencillas decisiones de “verdadero” o “falso” basadas en las reglas del álgebra de Boole. Verdadero puede estar representado por un 1, y falso por un 0, y en los circuitos lógicos estos numerales aparecen como señales de dos tensiones diferentes. Los circuitos lógicos se utilizan para adoptar decisiones específicas de “verdadero-falso” sobre la base de la presencia de múltiples señales “verdadero-falso” en las entradas. Las señales se pueden generar por conmutadores mecánicos o por transductores de estado sólido. La señal de entrada, una vez aceptada y acondicionada (para eliminar las señales eléctricas indeseadas, o ruidos), es procesada por los circuitos lógicos digitales. Las diversas familias de dispositivos lógicos digitales, por lo general circuitos integrados, ejecutan una variedad de funciones lógicas a través de las llamadas puertas lógicas, como las puertas OR, AND y NOT y combinaciones de las mismas (como NOR, que incluye a OR y a NOT). Otra familia lógica muy utilizada es la lógica transistor-transistor. También se emplea la lógica de semiconductor complementario de óxido metálico, que ejecuta funciones similares a niveles de potencia muy bajos pero a velocidades de funcionamiento ligeramente inferiores. Existen también muchas otras variedades de circuitos lógicos, incluyendo la hoy obsoleta lógica reóstato-transistor y la lógica de acoplamiento por emisor, utilizada para sistemas de muy altas velocidades.
Circuitos digitales y tablas booleanas
Los circuitos digitales operan en el sistema numérico binario, que implica que todas las variables de circuito deben ser 1 o 0. El álgebra utilizada para resolver problemas y procesar la información en los sistemas digitales se denomina álgebra de Boole, basada sobre la lógica más que sobre el cálculo de valores numéricos reales. El álgebra booleana considera que las proposiciones lógicas son verdaderas o falsas, según el tipo de operación que describen y si las variables son verdaderas o falsas. Verdadero corresponde al valor digital 1, mientras que falso corresponde a 0. El diagrama muestra diversos interruptores electrónicos, llamados puertas, cada uno de los cuales efectúa una determinada operación booleana. Existen tres operaciones booleanas que pueden utilizarse individualmente o en combinación: multiplicación lógica (puerta AND), suma lógica (puerta OR) e inversión lógica (puerta NOR). Las tablas adjuntas, llamadas tablas booleanas, presentan todas las posibles combinaciones de entrada frente a las salidas resultantes.
Los bloques elementales de un dispositivo lógico se denominan puertas lógicas digitales. Una puerta Y (AND) tiene dos o más entradas y una única salida. La salida de una puerta Y es verdadera sólo si todas las entradas son verdaderas. Una puerta O (OR) tiene dos o más entradas y una sola salida. La salida de una puerta O es verdadera si cualquiera de las entradas es verdadera, y es falsa si todas las entradas son falsas. Una puerta INVERSORA (INVERTER) tiene una única entrada y una única salida, y puede convertir una señal verdadera en falsa, efectuando de esta manera la función negación (NOT). A partir de las puertas elementales se pueden construir circuitos lógicos más complicados, entre los que cabe mencionar los circuitos biestables (también llamados flip-flops, que son interruptores binarios), contadores, comparadores, sumadores, y combinaciones más complejas.
En general, para ejecutar una determinada función es necesario conectar grandes cantidades de elementos lógicos en circuitos complejos. En algunos casos se utilizan microprocesadores para efectuar muchas de las funciones de conmutación y temporización de los elementos lógicos individuales. Los procesadores están específicamente programados con instrucciones individuales para ejecutar una determinada tarea o tareas. Una de las ventajas de los microprocesadores es que permiten realizar diferentes funciones lógicas, dependiendo de las instrucciones de programación almacenadas. La desventaja de los microprocesadores es que normalmente funcionan de manera secuencial, lo que podría resultar demasiado lento para algunas aplicaciones. En tales casos se emplean circuitos lógicos especialmente diseñados.
AVANCES RECIENTES |
El desarrollo de los circuitos integrados ha revolucionado los campos de las comunicaciones, la gestión de la información y la informática. Los circuitos integrados han permitido reducir el tamaño de los dispositivos con el consiguiente descenso de los costes de fabricación y de mantenimiento de los sistemas. Al mismo tiempo, ofrecen mayor velocidad y fiabilidad. Los relojes digitales, las computadoras portátiles y los juegos electrónicos son sistemas basados en microprocesadores. Otro avance importante es la digitalización de las señales de sonido, proceso en el cual la frecuencia y la amplitud de una señal de sonido se codifica digitalmente mediante técnicas de muestreo adecuadas, es decir, técnicas para medir la amplitud de la señal a intervalos muy cortos. La música grabada de forma digital, como la de los discos compactos, se caracteriza por una fidelidad que no era posible alcanzar con los métodos de grabación directa.
La electrónica médica ha progresado desde la tomografía axial computerizada (TAC) hasta llegar a sistemas que pueden diferenciar aún más los órganos del cuerpo humano. Se han desarrollado asimismo dispositivos que permiten ver los vasos sanguíneos y el sistema respiratorio. También la alta definición promete sustituir a numerosos procesos fotográficos al eliminar la necesidad de utilizar plata.
La investigación actual dirigida a aumentar la velocidad y capacidad de las computadoras se centra sobre todo en la mejora de la tecnología de los circuitos integrados y en el desarrollo de componentes de conmutación aún más rápidos. Se han construido circuitos integrados a gran escala que contienen varios millones de componentes en un solo chip. Se han llegado a fabricar computadoras que alcanzan altísimas velocidades en las cuales los semiconductores son reemplazados por circuitos superconductores que utilizan las uniones de Josephson (véase Efecto Josephson) y que funcionan a temperaturas próximas al cero absoluto.
No hay comentarios:
Publicar un comentario