Microprocesador





Microprocesador, circuito electrónico que actúa como unidad central de proceso de un ordenador, proporcionando el control de las operaciones de cálculo. Los microprocesadores también se utilizan en otros sistemas informáticos avanzados, como impresoras, automóviles o aviones.
El microprocesador es un tipo de circuito sumamente integrado. Los circuitos integrados, también conocidos como microchips o chips, son circuitos electrónicos complejos formados por componentes extremadamente pequeños formados en una única pieza plana de poco espesor de un material conocido como semiconductor. Hay microprocesadores que incorporan hasta 10 millones de transistores (que actúan como amplificadores electrónicos, osciladores o, más a menudo, como conmutadores), además de otros componentes como resistencias, diodos, condensadores y conexiones, todo ello en una superficie comparable a la de un sello postal.
Un microprocesador consta de varias secciones diferentes. La unidad aritmético-lógica (ALU, siglas en inglés) efectúa cálculos con números y toma decisiones lógicas; los registros son zonas de memoria especiales para almacenar información temporalmente; la unidad de control descodifica los programas; los buses transportan información digital a través del chip y de la computadora; la memoria local se emplea para los cómputos realizados en el mismo chip. Los microprocesadores más complejos contienen a menudo otras secciones; por ejemplo, secciones de memoria especializada denominadas memoria cache, que sirven para acelerar el acceso a los dispositivos externos de almacenamiento de datos. Los microprocesadores modernos funcionan con una anchura de bus de 64 bits (un bit es un dígito binario, una unidad de información que puede ser un uno o un cero): esto significa que pueden transmitirse simultáneamente 64 bits de datos.
Un cristal oscilante situado en el ordenador proporciona una señal de sincronización, o señal de reloj, para coordinar todas las actividades del microprocesador. La velocidad de reloj de los microprocesadores más avanzados es de unos 800 megahercios (MHz) —unos 800 millones de ciclos por segundo—, lo que permite ejecutar más de 1.000 millones de instrucciones cada segundo.
MEMORIA DE COMPUTADORA
Como el microprocesador no es capaz por sí solo de albergar la gran cantidad de memoria necesaria para almacenar instrucciones y datos de programa (por ejemplo, el texto de un programa de tratamiento de texto), pueden emplearse transistores como elementos de memoria en combinación con el microprocesador. Para proporcionar la memoria necesaria se emplean otros circuitos integrados llamados chips de memoria de acceso aleatorio (RAM, siglas en inglés), que contienen grandes cantidades de transistores. Existen diversos tipos de memoria de acceso aleatorio. La RAM estática (SRAM) conserva la información mientras esté conectada la tensión de alimentación, y suele emplearse como memoria cache porque funciona a gran velocidad. Otro tipo de memoria, la RAM dinámica (DRAM), es más lenta que la SRAM y debe recibir electricidad periódicamente para no borrarse. La DRAM resulta más económica que la SRAM y se emplea como elemento principal de memoria en la mayoría de las computadoras.
MICROCONTROLADOR
Un microprocesador no es un ordenador completo. No contiene grandes cantidades de memoria ni es capaz de comunicarse con dispositivos de entrada —como un teclado, un joystick o un ratón— o dispositivos de salida como un monitor o una impresora. Un tipo diferente de circuito integrado llamado microcontrolador es de hecho una computadora completa situada en un único chip, que contiene todos los elementos del microprocesador básico además de otras funciones especializadas. Los microcontroladores se emplean en videojuegos, reproductores de vídeo, automóviles y otras máquinas.
SEMICONDUCTORES
Todos los circuitos integrados se fabrican con semiconductores, sustancias cuya capacidad de conducir la electricidad es intermedia entre la de un conductor y la de un no conductor o aislante. El silicio es el material semiconductor más habitual. Como la conductividad eléctrica de un semiconductor puede variar según la tensión aplicada al mismo, los transistores fabricados con semiconductores actúan como minúsculos conmutadores que abren y cierran el paso de corriente en sólo unos pocos nanosegundos (milmillonésimas de segundo). Esto permite que un ordenador pueda realizar millones de instrucciones sencillas cada segundo y ejecutar rápidamente tareas complejas.
El bloque básico de la mayoría de los dispositivos semiconductores es el diodo, una unión de materiales de tipo negativo (tipo n) y positivo (tipo p). Los términos “tipo n” y “tipo p” se refieren a materiales semiconductores que han sido dopados, es decir, cuyas propiedades eléctricas han sido alteradas mediante la adición controlada de pequeñísimas concentraciones de impurezas como boro o fósforo. En un diodo, la corriente eléctrica sólo fluye en un sentido a través de la unión: desde el material de tipo p hasta el material de tipo n, y sólo cuando el material de tipo p está a una tensión superior que el de tipo n. La tensión que debe aplicarse al diodo para crear esa condición se denomina tensión de polarización directa. La tensión opuesta que hace que no pase corriente se denomina tensión de polarización inversa. Un circuito integrado contiene millones de uniones p-n, cada una de las cuales cumple una finalidad específica dentro de los millones de elementos electrónicos de circuito. La colocación y polarización correctas de las regiones de tipo p y tipo n hacen que la corriente eléctrica fluya por los trayectos adecuados y garantizan el buen funcionamiento de todo el chip.
TRANSISTORES
El transistor empleado más comúnmente en la industria microelectrónica se denomina transistor de efecto de campo de metal-óxido-semiconductor (MOSFET, siglas en inglés). Contiene dos regiones de tipo n, llamadas fuente y drenaje, con una región de tipo p entre ambas, llamada canal. Encima del canal se encuentra una capa delgada de dióxido de silicio, no conductor, sobre la cual va otra capa llamada puerta. Para que los electrones fluyan desde la fuente hasta el drenaje, es necesario aplicar una tensión a la puerta (tensión de polarización directa). Esto hace que la puerta actúe como un conmutador de control, conectando y desconectando el MOSFET y creando una puerta lógica que transmite unos y ceros a través del microprocesador.
FABRICACIÓN DE MICROPROCESADORES
Los microprocesadores se fabrican empleando técnicas similares a las usadas para otros circuitos integrados, como chips de memoria. Generalmente, los microprocesadores tienen una estructura más compleja que otros chips, y su fabricación exige técnicas extremadamente precisas.
La fabricación económica de microprocesadores exige su producción masiva. Sobre la superficie de una oblea de silicio se crean simultáneamente varios cientos de grupos de circuitos. El proceso de fabricación de microprocesadores consiste en una sucesión de deposición y eliminación de capas finísimas de materiales conductores, aislantes y semiconductores, hasta que después de cientos de pasos se llega a un complejo “bocadillo” que contiene todos los circuitos interconectados del microprocesador. Para el circuito electrónico sólo se emplea la superficie externa de la oblea de silicio, una capa de unas 10 micras de espesor (unos 0,01 mm, la décima parte del espesor de un cabello humano). Entre las etapas del proceso figuran la creación de sustrato, la oxidación, la litografía, el grabado, la implantación iónica y la deposición de capas.
La primera etapa en la producción de un microprocesador es la creación de un sustrato de silicio de enorme pureza, una “rodaja” de silicio en forma de una oblea redonda pulida hasta quedar lisa como un espejo. En la actualidad, las obleas más grandes empleadas en la industria tienen 200 mm de diámetro.
En la etapa de oxidación se coloca una capa eléctricamente no conductora, llamada dieléctrico. El tipo de dieléctrico más importante es el dióxido de silicio, que se “cultiva” exponiendo la oblea de silicio a una atmósfera de oxígeno en un horno a unos 1.000 ºC. El oxígeno se combina con el silicio para formar una delgada capa de óxido de unos 75 angstroms de espesor (un ángstrom es una diezmilmillonésima de metro).
Casi todas las capas que se depositan sobre la oblea deben corresponder con la forma y disposición de los transistores y otros elementos electrónicos. Generalmente esto se logra mediante un proceso llamado fotolitografía, que equivale a convertir la oblea en un trozo de película fotográfica y proyectar sobre la misma una imagen del circuito deseado. Para ello se deposita sobre la superficie de la oblea una capa fotosensible cuyas propiedades cambian al ser expuesta a la luz. Los detalles del circuito pueden llegar a tener un tamaño de sólo 0,25 micras. Como la longitud de onda más corta de la luz visible es de unas 0,5 micras, es necesario emplear luz ultravioleta de baja longitud de onda para resolver los detalles más pequeños. Después de proyectar el circuito sobre la capa fotorresistente y revelar la misma, la oblea se graba: esto es, se elimina la parte de la oblea no protegida por la imagen grabada del circuito mediante productos químicos (un proceso conocido como grabado húmedo) o exponiéndola a un gas corrosivo llamado plasma en una cámara de vacío especial.
En el siguiente paso del proceso, la implantación iónica, se introducen en el silicio impurezas como boro o fósforo para alterar su conductividad. Esto se logra ionizando los átomos de boro o de fósforo (quitándoles uno o dos electrones) y lanzándolos contra la oblea a elevadas energías mediante un implantador iónico. Los iones quedan incrustados en la superficie de la oblea.
En el último paso del proceso, las capas o películas de material empleadas para fabricar un microprocesador se depositan mediante el bombardeo atómico en un plasma, la evaporación (en la que el material se funde y posteriormente se evapora para cubrir la oblea) o la deposición de vapor químico, en la que el material se condensa a partir de un gas a baja presión o a presión atmosférica. En todos los casos, la película debe ser de gran pureza, y su espesor debe controlarse con una precisión de una fracción de micra.
Los detalles de un microprocesador son tan pequeños y precisos que una única mota de polvo puede destruir todo un grupo de circuitos. Las salas empleadas para la fabricación de microprocesadores se denominan salas limpias, porque el aire de las mismas se somete a un filtrado exhaustivo y está prácticamente libre de polvo. Las salas limpias más puras de la actualidad se denominan de clase 1. La cifra indica el número máximo de partículas mayores de 0,12 micras que puede haber en un pie cúbico de aire (0,028 metros cúbicos). Como comparación, un hogar normal sería de clase 1 millón.
HISTORIA DEL MICROPROCESADOR
Microprocesador Pentium
El microprocesador Pentium (que aquí se muestra con una ampliación de 2,5 veces) es fabricado por Intel Corporation. Contiene más de tres millones de transistores, y puede hacer que algunas partes de sus circuitos vayan más lentas o se detengan cuando no son necesarias, con lo que ahorra energía.


El primer microprocesador fue el Intel 4004, producido en 1971. Se desarrolló originalmente para una calculadora, y resultaba revolucionario para su época. Contenía 2.300 transistores en un microprocesador de 4 bits que sólo podía realizar 60.000 operaciones por segundo. El primer microprocesador de 8 bits fue el Intel 8008, desarrollado en 1979 para su empleo en terminales informáticos. El Intel 8008 contenía 3.300 transistores. El primer microprocesador realmente diseñado para uso general, desarrollado en 1974, fue el Intel 8080 de 8 bits, que contenía 4.500 transistores y podía ejecutar 200.000 instrucciones por segundo. Los microprocesadores modernos tienen una capacidad y velocidad mucho mayores. Entre ellos figuran el Intel Pentium Pro, con 5,5 millones de transistores; el UltraSparc-II, de Sun Microsystems, que contiene 5,4 millones de transistores; el PowerPC G4, desarrollado conjuntamente por Apple, IBM y Motorola, con 7 millones de transistores, y el Alpha 21164A, de Digital Equipment Corporation, con 9,3 millones de transistores.
TECNOLOGÍAS FUTURAS
La tecnología de los microprocesadores y de la fabricación de circuitos integrados está cambiando rápidamente. Se prevé que en 2010 los microprocesadores avanzados contengan unos 800 millones de transistores.
Se cree que el factor limitante en la potencia de los microprocesadores acabará siendo el comportamiento de los propios electrones al circular por los transistores. Cuando las dimensiones se hacen muy pequeñas, los efectos cuánticos debidos a la naturaleza ondulatoria de los electrones podrían dominar el comportamiento de los transistores y circuitos. Puede que sean necesarios nuevos dispositivos y diseños de circuitos a medida que los microprocesadores se aproximan a dimensiones atómicas. Para producir las generaciones futuras de microchips se necesitarán técnicas como la epitaxia por haz molecular, en la que los semiconductores se depositan átomo a átomo en una cámara de vacío ultraelevado, o la microscopía de barrido de efecto túnel, que permite ver e incluso desplazar átomos individuales con precisión.

Caja negra






Recuperación de una caja negra
En la imagen vemos el registrador de datos de vuelo (FDR, siglas en inglés) del vuelo 261 de Alaska Airlines agarrado por el brazo robótico del sumergible no tripulado que recuperó el instrumento del fondo del mar a principios de febrero de 2000. El vuelo 261 se estrelló en el océano Pacífico frente a la costa meridional de California (Estados Unidos) en enero de 2000, y sus 88 ocupantes fallecieron. Tanto los FDR como los registradores de voz de la cabina (CVR) están equipados con balizas de localización submarina (ULB), que emiten una señal que permite a los investigadores localizar la caja mediante sonar.

Caja negra, en informática, unidad cuya estructura interna se desconoce, pero cuya función está documentada. Los diseñadores de hardware y de software utilizan este término para hacer referencia a los circuitos o al código de programación que ejecutan determinada función. La mecánica interna de la función no es algo que interese al diseñador que utiliza una caja negra para obtener una función. Por ejemplo, un chip de memoria puede considerarse una caja negra. Muchas personas utilizan chips de memoria, e incluso los diseñan para los equipos informáticos, pero por lo general sólo los diseñadores de chips de memoria necesitan comprender su funcionamiento interno.


Caja negra de una aeronave
Este aparato registrador permite determinar la causa de los accidentes de las aeronaves. Diversas capas la protegen de incendios, explosiones e inmersiones, y su intenso color naranja (a pesar de su nombre) favorece su localización en cualquier entorno.

Caja negra (transportes), en aviación, aparato registrador que permite reconstruir las circunstancias concretas de cualquier vuelo. Situada a bordo de las aeronaves, se emplea para determinar las causas de los accidentes.
El nombre de “caja negra” deriva de la informática y no tiene ninguna relación con su aspecto, ya que es de color naranja fluorescente para permitir su rápida localización visual en cualquier entorno. Cubierta por diversos envoltorios que la protegen de cualquier incidencia (explosiones, incendios, caídas, inmersiones), presenta tres dispositivos de registro en puntos distintos de la aeronave: dos en la cola y uno en cabeza. Los de cola registran los parámetros básicos de vuelo (altitud, velocidad, evolución de vuelo y otros) y recogen el sonido ambiente. El dispositivo de cabeza posee tres micrófonos en la cabina que siempre graban la última media hora de vuelo. En caso de accidente, el análisis de las cintas de grabación proporciona evidencias sobre las causas y, en muchos casos, permite establecer mecanismos para evitarlos en el futuro.

Altair 8800






Altair 8800, pequeño ordenador o computadora lanzado en 1975 por Micro Instrumentation Telemetry Systems de Nuevo México (EEUU). El Altair se basaba en un microprocesador Intel de 8 bits, tenía 256 bytes de memoria de acceso aleatorio (RAM), recibía la entrada de datos a través de un banco de conmutadores en el panel delantero y mostraba la información mediante una fila de diodos emisores de luz (LED). Aunque de vida efímera, se considera que el Altair fue el primer ordenador o computadora personal de éxito. 

Procesadores





1971 Primer microprocesador
Se desarrolla el primer microprocesador, el Intel 4004, un microprocesador de 4 bits que contiene 2.300 transistores. El Intel 8080 de 8 bits, desarrollado en 1974, fue el primer microprocesador realmente diseñado para uso general.

Microprocesador 68881
Microprocesador 68881, en informática, el coprocesador matemático, o de coma flotante, de la firma estadounidense Motorola para los procesadores 68000 y 68020. Los coprocesadores matemáticos aceleran cualquier función de cálculo matemático siempre que las aplicaciones los admitan. El 68881 acelera los procesos mediante un conjunto adicional de instrucciones aritméticas de coma flotante muy complejas, un conjunto de registros de datos en coma flotante y 22 constantes incorporadas que incluyen potencias de 10. El 68881 cumple el estándar ANSI/IEEE 754-1985 de aritmética binaria en coma flotante.
Durante el diseño del Macintosh II, la compañía Apple descubrió que la instalación del 68881 mejoraba de forma significativa el rendimiento de la interfaz, y con ello el rendimiento aparente de todo el equipo. Por ello, Apple decidió incluir el coprocesador como equipamiento de serie. Véase también Ordenador o computadora; Procesador de coma flotante; Circuito integrado; Microordenador o microcomputadora.
Microprocesador 8086
Microprocesador 8086, en informática, microprocesador de Intel presentado en 1978. Es un descendiente directo del 8080, pero con registros de 16 bits, un bus de datos de 16 bits y direccionamiento de 20 bits, y permite controlar más de un megabyte de memoria. Está disponible con velocidades de 4,77, 8 y 10 MHz. Los modelos 25 y 30 de los equipos PS/2 de IBM, disponen de un 8086 a 8 MHz. Véase Ordenador o computadora; Circuito integrado; Microordenador.


Microprocesador 80286
Microprocesador 80286, denominado también 286. Se trata de un microprocesador de 16 bits de Intel, presentado en 1982 e incluido desde 1984 en el equipo PC/AT de IBM y compatibles. El 80286 dispone de registros de 16 bits, transfiere información a través del bus de datos a 16 bits simultáneos y utiliza 24 bits para direccionar la memoria. El 80286 puede operar en dos modos, el real (que es compatible con MS-DOS y con los límites de los chips 8086 y 8088) y el protegido (que potencia la funcionalidad del microprocesador). El modo real limita a 1 megabyte la cantidad de memoria que el microprocesador puede direccionar. Por otro lado, en el modo protegido, el 80286 puede acceder directamente a 16 megabytes de memoria. Además, un 80286 en modo protegido protege al sistema operativo de aplicaciones que provocan fallos. Esta protección no existe en procesadores 8088 y 8086, ni está presente en el 80286 cuando funciona en modo real. Véase Ordenador o computadora; Circuito integrado; Microordenador.

Microprocesador 80386
Microprocesador 80386, denominado también 386SX en informática. Se trata de un microprocesador de Intel, introducido en 1988 como un producto de bajo costo alternativo al 80386DX. El 80386SX es básicamente un procesador 80386DX limitado por un bus de datos de 16 bits. El diseño basado en 16 bits permite configurar los sistemas 80386SX con componentes menos costosos del tipo AT, reduciendo considerablemente el precio total del sistema. El 80386SX proporciona además prestaciones superiores al 80286 y compatibilidad con todo el software diseñado para el 80386DX. Incorpora también características del 80386DX, como la multitarea y el modo 8086 virtual. Véase Ordenador o computadora; Circuito integrado; Microordenador.

Microprocesador 80387
Microprocesador 80387, denominado también 387 en el campo de la informática. Se trata de un coprocesador matemático, también denominado de coma flotante, diseñado por Intel para la familia de procesadores 80386. Está disponible a velocidades de 16, 20, 25 y 33 MHz. El coprocesador 80387 puede aumentar de forma considerable el rendimiento del sistema, siempre que el software de aplicación haga uso de él, ya que pone a disposición de la aplicación instrucciones aritméticas, trigonométricas, exponenciales y logarítmicas con las que no cuenta el 80386. El 80387 también incorpora operaciones fundamentales para el cálculo de senos, cosenos, tangentes, arcotangentes y logaritmos. Si se utilizan estas instrucciones adicionales, las operaciones son realizadas por el 80387, permitiendo al 80386 dedicarse a otras tareas. El 80387 puede procesar enteros de 32 y 64 bits, números en coma flotante de 32, 64 y 80 bits y operandos BCD (decimales codificados en binario) de 18 dígitos; cumple la norma ANSI/IEEE 754-1985 sobre aritmética en coma flotante binaria. El 80387 opera con independencia del modo en que se encuentre el 80386 y funciona correctamente cuando éste trabaja en modo real, protegido o en 8086 virtual. Véase Ordenador o computadora; Procesador de coma flotante; Circuito integrado; Microordenador.

Microprocesador 80486
Microprocesador 80486, denominado también 80486DX o 486DX, microprocesador Intel de 32 bits lanzado al mercado en 1989. Su característica principal es la incorporación de un coprocesador matemático integrado. El 486 es un procesador de 32 bits en el bus de datos y 32 bits en el bus de direcciones. Integra 1.200.000 transistores y se fabricó para tres velocidades de reloj (25 MHz, 33 MHz y 50 MHz). Cuando se habla de procesador 486 de una manera genérica se está hablando de un 486DX. Posteriormente, en el año 1991 Intel lanzó al mercado el 486SX que consiste en un procesador 486DX pero sin coprocesador matemático integrado, que era una alternativa de menor coste aunque menor capacidad de proceso que un 486DX. Otros microprocesadores de la familia 486 fueron el 486SL, el 486DX2 y el 486DX4. El 486SL fue diseñado para computadoras portátiles, y su principal característica era que integraba un sistema de ahorro de energía. Los 486DX2 y 486DX4 aumentaban la velocidad total de proceso incrementando la velocidad de reloj interna del microprocesador.


Microprocesador Pentium
Microprocesador Pentium, microprocesador lanzado al mercado por Intel Corporation en 1993, sucesor del 486. Según la sucesión lógica, debería haberse llamado 586 o 80586, pero Intel lo denominó Pentium por razones de copyright. Las primeras versiones de este procesador tenían una frecuencia de reloj de 60 MHz (megahercios), con una alimentación eléctrica de 5 voltios, un bus de direcciones de 32 bits y un bus de datos externo de 64 bits; contenían 3.100.000 transistores y coprocesador matemático. Los modelos MMX incorporaron instrucciones específicas para el manejo de aplicaciones y elementos multimedia. La última versión de este procesador es el Pentium 4 a 3,06 GHz (gigahercios; 1 GHz = 1.000 MHz), con soporte para tecnología HT (Hyper-Threading) que aumenta el rendimiento del sistema cuando se ejecutan diferentes aplicaciones al mismo tiempo.

Entradas populares

Me gusta

Seguidores