Trigonometría
Cálculo de la altura de un edificio
Para hallar la altura, H, de un edificio se miden la distancia desde el punto de observación a la base del edificio, D, y el ángulo θ (theta) que se muestra en el dibujo. El cociente entre la altura H y la distancia D es igual a la tangente de θ (H/D = tg θ). Para calcular H se multiplica la tangente de θ por la distancia D (H = D tg θ). El ángulo se puede medir con cierta exactitud utilizando un transportador de ángulos y una plomada (hecha con un lápiz que colgaremos de un hilo). Se sujeta la plomada en el origen del transportador y se apunta con la base de éste hacia el tejado del edificio. El ángulo buscado es 90º menos el formado por el hilo de la plomada.
Trigonometría, rama de las matemáticas que estudia las relaciones entre los lados y los ángulos de los triángulos. Etimológicamente significa ‘medida de triángulos’.
Las primeras aplicaciones de la trigonometría se hicieron en los campos de la navegación, la geodesia y la astronomía, en los que el principal problema era determinar una distancia inaccesible, es decir, una distancia que no podía ser medida de forma directa, como la distancia entre la Tierra y la Luna. Se encuentran notables aplicaciones de las funciones trigonométricas en la física y en casi todas las ramas de la ingeniería, sobre todo en el estudio de fenómenos periódicos, como el flujo de corriente alterna.
Las dos ramas fundamentales de la trigonometría son la trigonometría plana y la trigonometría esférica.
2 | TRIGONOMETRÍA PLANA |
Se ocupa fundamentalmente de la resolución de triángulos planos. Para ello, se definen las razones trigonométricas de los ángulos y se estudian las relaciones entre ellas.
2.1 | Razones trigonométricas de ángulos agudos |
La base de la trigonometría está en las razones trigonométricas, valores numéricos asociados a cada ángulo, que permiten relacionar operativamente los ángulos y lados de los triángulos. Las más importantes son seno, coseno y tangente, que se definen a continuación.
|
En un ángulo α de un triángulo rectángulo, ABC, se llama seno de α, y se escribe sen α, al cociente entre el cateto opuesto y la hipotenusa:
|
Análogamente se definen el coseno (cos) como cociente entre el cateto adyacente y la hipotenusa, y la tangente (tg) como el cociente entre el cateto opuesto y el cateto adyacente:
|
Hace no muchos años existían tablas numéricas en las que se daban los valores de las razones trigonométricas de una gran cantidad de ángulos. En la actualidad, con una calculadora científica se obtienen con toda precisión los valores de las razones trigonométricas de cualquier ángulo.
Las razones trigonométricas de un ángulo cumplen las siguientes propiedades:
Aunque el ángulo α pertenezca a otro triángulo rectángulo de lados distintos al anterior, los valores obtenidos para sen α, cos α y tg α son los mismos. Es decir, las razones trigonométricas de un ángulo no dependen del triángulo sobre el que se midan. Esto es debido a que dos triángulos rectángulos con un mismo ángulo agudo son semejantes y, por tanto, los cocientes, a/c, b/c, a/b coinciden en ambos.
Las razones trigonométricas sen y cos de un mismo ángulo guardan la siguiente relación fundamental:
(sen α)2 + (cos α)2 = 1
En vez de (sen α)2 se acostumbra a escribir sen2 α, y lo mismo con las demás razones trigonométricas. Por eso, la igualdad anterior se suele expresar así:
sen2 α + cos2 α = 1
Las razones sen α, cos α y tg α se relacionan entre sí del siguiente modo:
Aunque el ángulo α pertenezca a otro triángulo rectángulo de lados distintos al anterior, los valores obtenidos para sen α, cos α y tg α son los mismos. Es decir, las razones trigonométricas de un ángulo no dependen del triángulo sobre el que se midan. Esto es debido a que dos triángulos rectángulos con un mismo ángulo agudo son semejantes y, por tanto, los cocientes, a/c, b/c, a/b coinciden en ambos.
Las razones trigonométricas sen y cos de un mismo ángulo guardan la siguiente relación fundamental:
(sen α)2 + (cos α)2 = 1
En vez de (sen α)2 se acostumbra a escribir sen2 α, y lo mismo con las demás razones trigonométricas. Por eso, la igualdad anterior se suele expresar así:
sen2 α + cos2 α = 1
Las razones sen α, cos α y tg α se relacionan entre sí del siguiente modo:
|
2.2 | Razones trigonométricas de ángulos cualesquiera |
Para definir las razones trigonométricas de ángulos cualesquiera (de 0º a 360º) se empieza situando el ángulo en la llamada circunferencia goniométrica, una circunferencia de radio 1 con su centro, O, situado sobre unos ejes coordenados:
|
El vértice del ángulo se sitúa en O y el primero de sus lados, a, sobre la parte positiva del eje de las X. El segundo lado, b, se abre girando en sentido contrario a las agujas del reloj. Este segundo lado corta a la circunferencia goniométrica en un punto, P, cuyas coordenadas son c = cos α y s = sen α. Es decir, P(cos α, sen α). La tg α= t se sitúa sobre la recta r, tangente a la circunferencia en U, y queda determinada por el punto T en que el lado b, o su prolongación, corta a r.
Según esta definición, las razones trigonométricas sen, cos y tg toman valores positivos o negativos según el cuadrante en el que se encuentre el ángulo α. En la figura siguiente se resumen los signos de las tres razones:
|
Los ángulos 90º y 270º no tienen tangente, pues para ellos el segundo lado no corta a la recta r.
Las razones trigonométricas de ángulos no agudos cumplen las mismas relaciones que las de los ángulos agudos: sen2 α + cos2 α = 1
|
2.3 | Otras razones trigonométricas |
A partir de las razones trigonométricas sen, cos y tg se definen la cosecante (cosec), la secante (sec) y la cotangente (cot) del siguiente modo:
|
Estas razones trigonométricas no están definidas cuando el denominador es cero. Por ejemplo, sec α no está definida para α = 90º ni para α = 270º, pues cos 90º = 0 y cos 270º = 0.
La cotangente es cero donde la tangente no está definida, es decir, cot 90º = 0 y cot 270º = 0.
Estas tres razones trigonométricas se sitúan en la circunferencia goniométrica como se indica en la figura:
|
2.4 | Relaciones entre las razones trigonométricas de algunos ángulos |
Si dos ángulos son complementarios (suman 90º) sus razones trigonométricas están relacionadas. También lo están las de los ángulos suplementarios (los que suman 180º) y las de los opuestos (los que suman 360º). A continuación se dan las relaciones fundamentales entre ellas.
• Ángulos complementarios, α y 90º - α:
|
• sen (90º - α) = cos α
• cos (90º - α) = sen α
• tg (90º - α) = cos α/sen α = 1/tg α
• Ángulos suplementarios, α y 180º - α:
|
• sen (180º - α) = sen α
• cos (180º - α) = -cos α
• tg (180º - α) = -tg α
• Ángulos opuestos, α y -α:
|
• sen (-α) = -sen α
• cos (-α) = cos α
• tg (-α) = -tg α
• Ángulos que difieren en 180º, α y α + 180º:
|
• sen (α + 180º) = -sen α
• cos (α + 180º) = -cos α
• tg (α + 180º) = tg α
2.5 | Resolución de triángulos |
Las razones trigonométricas de ángulos agudos sirven para resolver triángulos rectángulos, es decir, para averiguar uno de sus elementos desconocidos a partir de algunos otros conocidos.
Por ejemplo, si se conoce la hipotenusa, h, y un ángulo α, se puede calcular el cateto opuesto, c, a ese ángulo, mediante el seno, puesto que al ser sen α = c/h se obtiene que c = h sen α.
Los teoremas del seno y del coseno permiten resolver triángulos oblicuángulos. Por ejemplo, si se quiere conocer el lado c de un triángulo del que se conocen los otros dos lados a y b, y el ángulo, C, opuesto al lado desconocido, el teorema del coseno permite calcularlo: c2 = a2 + b2 – 2ab·cos C
O bien, si se conocen un lado, a, y los ángulos de un triángulo, se puede hallar otro lado, b, mediante el teorema del seno:
|
De aquí, despejando b se obtiene:
|
2.6 | Funciones trigonométricas |
Las funciones trigonométricas se obtienen a partir de las razones trigonométricas de la forma siguiente:
El ángulo se expresa en radianes. Por tanto, los 360º de una circunferencia pasan a ser 2p radianes.
Se considera que cualquier número real puede ser la medida de un ángulo. Sus razones trigonométricas se relacionan con las razones de los ángulos comprendidos en el intervalo [0, 2p) del siguiente modo: si x - x’ = k · 2p, k número entero, entonces sen x = sen x’, cos x = cos x’, tg x = tg x’. Es decir, si dos números difieren en un número entero de veces 2p, entonces tienen las mismas razones trigonométricas.
El ángulo se expresa en radianes. Por tanto, los 360º de una circunferencia pasan a ser 2p radianes.
Se considera que cualquier número real puede ser la medida de un ángulo. Sus razones trigonométricas se relacionan con las razones de los ángulos comprendidos en el intervalo [0, 2p) del siguiente modo: si x - x’ = k · 2p, k número entero, entonces sen x = sen x’, cos x = cos x’, tg x = tg x’. Es decir, si dos números difieren en un número entero de veces 2p, entonces tienen las mismas razones trigonométricas.
De este modo se obtienen las funciones trigonométricas y = sen x, y = cos x, y = tg x, llamadas también funciones circulares. Sus representaciones gráficas son:
|
|
|
Las otras funciones trigonométricas, y = cosec x, y = sec x, y = cot x, por la relación que tienen con las tres anteriores, se representan con ellas en las figuras siguientes:
|
|
|
Todas las funciones trigonométricas son periódicas: sen, cos, sec y cosec tienen periodo 2p, mientras que tg y cot tienen periodo p.
2.7 | Funciones inversas |
La expresión “y es el seno de θ” o y = sen θ, es equivalente a la expresión “θ es el ángulo cuyo seno es igual a y”, lo que se expresa como θ = arcsen y, o también como θ = sen-1y. La función arcsen (que se lee arco seno) es la función inversa o recíproca de la función sen. Las otras funciones inversas, arccos y, arctg y, arccot y, arcsec y, y arccosec y, se definen del mismo modo. En la expresión y = sen θ o θ = arcsen y, un valor dado de y genera un número infinito de valores de θ, puesto que sen p/6 = sen 5p/6 = sen ((p/6) + 2p) =…= y, teniendo en cuenta que los ángulos p/6 y 5p/6 son suplementarios. Por tanto, si θ = arcsen y, entonces θ = (p/6) + n 2p y θ = (5p/6) + n 2p, para cualquier entero n positivo, negativo o nulo. El valor p/6 se toma como valor principal o fundamental del arcsen y. Para todas las funciones inversas, se suele dar su valor principal. Existen distintas costumbres, pero la más común es que los valores principales de las funciones inversas estén en los intervalos que se dan a continuación:
-p/2 ≤ arcsen y ≤ p/2
0 ≤ arccos y ≤ p
-p/2 < arctg y < p/2
0 < arccosec y < p
-p/2 < arcsec y < p/2
0 < arccot y < p
-p/2 ≤ arcsen y ≤ p/2
0 ≤ arccos y ≤ p
-p/2 < arctg y < p/2
0 < arccosec y < p
-p/2 < arcsec y < p/2
0 < arccot y < p
3 | TRIGONOMETRÍA ESFÉRICA |
La trigonometría esférica, que se usa sobre todo en navegación y astronomía, estudia triángulos esféricos, es decir, figuras formadas por arcos de circunferencias máximas contenidos en la superficie de una esfera. El triángulo esférico, al igual que el triángulo plano, tiene seis elementos: los tres lados a, b, c, y los tres ángulos A, B y C. Sin embargo, los lados de un triángulo esférico son magnitudes angulares en vez de lineales, y dado que son arcos de circunferencias máximas de una esfera, su medida viene dada por el ángulo central correspondiente. Un triángulo esférico queda definido dando tres elementos cualesquiera de los seis, pues, al igual que en la geometría plana, hay fórmulas que relacionan las distintas partes de un triángulo, que se pueden utilizar para calcular los elementos desconocidos.
Por ejemplo, el teorema del seno adopta la siguiente forma para triángulos esféricos:
|
La trigonometría esférica es de gran importancia para la teoría de la proyección estereográfica y en geodesia. Es también el fundamento de los cálculos astronómicos. Por ejemplo, la solución del llamado triángulo astronómico se utiliza para encontrar la latitud y longitud de un punto, la hora del día, la posición de una estrella y otras magnitudes.
4 | HISTORIA |
La historia de la trigonometría se remonta a las primeras matemáticas conocidas, en Egipto y Babilonia. Los egipcios establecieron la medida de los ángulos en grados, minutos y segundos. Sin embargo, hasta los tiempos de la Grecia clásica no empezó a haber trigonometría en las matemáticas. En el siglo II a.C. el astrónomo Hiparco de Nicea compiló una tabla trigonométrica para resolver triángulos. Comenzando con un ángulo de 7y° y yendo hasta 180° con incrementos de 7y°, la tabla daba la longitud de la cuerda delimitada por los lados del ángulo central dado que corta a una circunferencia de radio r. Esta tabla es similar a la moderna tabla del seno. No se sabe con certeza el valor de r utilizado por Hiparco, pero sí se sabe que 300 años más tarde el astrónomo Tolomeo utilizó r = 60, pues los griegos adoptaron el sistema numérico sexagesimal (base 60) de los babilonios.
Tolomeo incorporó en su gran libro de astronomía el Almagesto, una tabla de cuerdas con incrementos angulares de y°, desde 0° hasta 180°, con un error menor que 1/3.600 de unidad. También explicó su método para compilar esta tabla de cuerdas, y a lo largo del libro dio bastantes ejemplos de cómo utilizar la tabla para calcular los elementos desconocidos de un triángulo a partir de los conocidos. Tolomeo fue el autor del que hoy se conoce como teorema de Menelao para resolver triángulos esféricos, y durante muchos siglos su trigonometría fue la introducción básica para los astrónomos. Quizás al mismo tiempo que Tolomeo, los astrónomos de la India habían desarrollado también un sistema trigonométrico basado en la función seno en vez de cuerdas como los griegos. Esta función seno, al contrario que el seno utilizado en la actualidad, no era una proporción, sino la longitud del lado opuesto a un ángulo en un triángulo rectángulo de hipotenusa dada. Los matemáticos indios utilizaron diversos valores para ésta en sus tablas.
A finales del siglo VIII los astrónomos árabes habían recibido la herencia de las tradiciones de Grecia y de la India, y prefirieron trabajar con la función seno. En las últimas décadas del siglo X ya habían completado la función seno y las otras cinco funciones y habían descubierto y demostrado varios teoremas fundamentales de la trigonometría tanto para triángulos planos como esféricos. Varios matemáticos sugirieron el uso del valor r = 1 en vez de r = 60, lo que dio lugar a los valores modernos de las funciones trigonométricas. Los árabes también incorporaron el triángulo polar en los triángulos esféricos. Todos estos descubrimientos se aplicaron a la astronomía y también se utilizaron para medir el tiempo astronómico y para encontrar la dirección de la Meca, lo que era necesario para las cinco oraciones diarias requeridas por la ley islámica. Los científicos árabes también compilaron tablas de gran exactitud. Por ejemplo, las tablas del seno y de la tangente, construidas con intervalos de 1/60 de grado (1 minuto) tenían un error menor que 1 dividido por 700 millones. Además, el gran astrónomo Nasir al-Dìn al-Tusì escribió el Libro de la figura transversal, el primer estudio de las trigonometrías plana y esférica como ciencias matemáticas independientes.
El occidente latino se familiarizó con la trigonometría árabe a través de traducciones de libros de astronomía arábigos, que comenzaron a aparecer en el siglo XII. El primer trabajo importante en esta materia en Europa fue escrito por el matemático y astrónomo alemán Johann Müller, llamado Regiomontano. Durante el siguiente siglo, el también astrónomo alemán Georges Joachim, conocido como Rético, introdujo el concepto moderno de funciones trigonométricas como proporciones en vez de longitudes de ciertas líneas. El matemático francés François Viète incorporó el triángulo polar en la trigonometría esférica y encontró fórmulas para expresar las funciones de ángulos múltiples, sen nθ y cos nθ, en función de potencias de sen θ y cos θ.
Los cálculos trigonométricos recibieron un gran empuje gracias al matemático escocés John Napier, quien inventó los logaritmos a principios del siglo XVII. También encontró reglas mnemotécnicas para resolver triángulos esféricos, y algunas proporciones (llamadas analogías de Napier) para resolver triángulos esféricos oblicuos.
Casi exactamente medio siglo después de la publicación de los logaritmos de Napier, Isaac Newton inventó el cálculo diferencial e integral. Uno de los fundamentos del trabajo de Newton fue la representación de muchas funciones matemáticas utilizando series infinitas de potencias de la variable x. Newton encontró la serie para el sen x y series similares para el cos x y la tg x. Con la invención del cálculo las funciones trigonométricas fueron incorporadas al análisis, donde todavía hoy desempeñan un importante papel tanto en las matemáticas puras como en las aplicadas.
Por último, en el siglo XVIII, el matemático suizo Leonhard Euler definió las funciones trigonométricas utilizando expresiones con exponenciales de números complejos. Esto convirtió a la trigonometría en sólo una de las muchas aplicaciones de los números complejos; además, Euler demostró que las propiedades básicas de la trigonometría eran simplemente producto de la aritmética de los números complejos.