Disoluciones





Dos tipos de disoluciones sólidas
Se forma una disolución sólida cuando los átomos de una sustancia se distribuyen por completo alrededor de los de otra. Las aleaciones, que son mezclas de dos o más metales, son con frecuencia disoluciones sólidas. Aquí se ilustran dos tipos de estas disoluciones. La de la izquierda es intersticial, lo que significa que los átomos disueltos ocupan espacios vacíos de la estructura cristalina del material disolvente. Esto sólo es posible cuando los átomos disueltos son mucho menores que los de la sustancia que los recibe. Pertenecen a esta clase ciertos aceros formados por una disolución de carbono en hierro. La disolución de la derecha es de sustitución: los átomos disueltos sustituyen a algunos de los que forman la red cristalina receptora. Pertenece a esta categoría el bronce, en el que el cinc se disuelve en cobre.

Disoluciones, en química, mezclas homogéneas de dos o más sustancias. La sustancia presente en mayor cantidad suele recibir el nombre de disolvente, y a la de menor cantidad se le llama soluto y es la sustancia disuelta. El soluto puede ser un gas, un líquido o un sólido, y el disolvente puede ser también un gas, un líquido o un sólido. El agua con gas es un ejemplo de un gas (dióxido de carbono) disuelto en un líquido (agua). Las mezclas de gases, como ocurre en la atmósfera, son disoluciones. Las disoluciones verdaderas se diferencian de las disoluciones coloidales y de las suspensiones en que las partículas del soluto son de tamaño molecular, y se encuentran dispersas entre las moléculas del disolvente. Observadas a través del microscopio, las disoluciones aparecen homogéneas y el soluto no puede separarse por filtración. Las sales, ácidos y bases se ionizan al disolverse en agua (véase Ácidos y bases; Ionización).
Algunos metales son solubles en otros en estado líquido y solidifican manteniendo la mezcla de átomos. Si en dicha mezcla los dos metales pueden solidificar en cualquier proporción, se trata de una disolución sólida.
SOLUBILIDAD
Algunos líquidos, como el agua y el alcohol, pueden disolverse entre ellos en cualquier proporción. En una disolución de azúcar en agua, puede suceder que, si se le sigue añadiendo más azúcar, se llegue a un punto en el que ya no se disolverá más, pues la disolución está saturada. La solubilidad de un compuesto en un disolvente concreto y a una temperatura y presión dadas se define como la cantidad máxima de ese compuesto que puede ser disuelta en la disolución. En la mayoría de las sustancias, la solubilidad aumenta al aumentar la temperatura del disolvente. En el caso de sustancias como los gases o sales orgánicas de calcio, la solubilidad en un líquido aumenta a medida que disminuye la temperatura. En general, la mayor solubilidad se da en disoluciones cuyas moléculas tienen una estructura similar a las del disolvente. Por ejemplo, el etanol (C2H5OH) y el agua (HOH) tienen moléculas de estructura similar y son muy solubles entre sí.
PROPIEDADES FÍSICAS DE LAS DISOLUCIONES
Cuando se añade un soluto a un disolvente, se alteran algunas propiedades físicas del disolvente. Al aumentar la cantidad del soluto, sube el punto de ebullición y desciende el punto de solidificación. Así, para evitar la congelación del agua utilizada en la refrigeración de los motores de los automóviles, se le añade un anticongelante (soluto), como el 1,2-etanodiol (HOCH2CH2OH). Por otra parte, al añadir un soluto se rebaja la presión de vapor del disolvente.
Otra propiedad destacable de una disolución es su capacidad para ejercer una presión osmótica. Si separamos dos disoluciones de concentraciones diferentes por una membrana semipermeable (una membrana que permite el paso de las moléculas del disolvente, pero impide el paso de las del soluto), las moléculas del disolvente pasarán de la disolución menos concentrada a la disolución de mayor concentración, haciendo a esta última más diluida (véase Ósmosis).
CONCENTRACIÓN DE UNA DISOLUCIÓN
Existen distintas formas de expresar la concentración de una disolución, pero las dos más utilizadas son: gramos por litro (g/l) y molaridad (M). Los gramos por litro indican la masa de soluto, expresada en gramos, contenida en un determinado volumen de disolución, expresado en litros. Así, una disolución de cloruro de sodio con una concentración de 40 g/l contiene 40 g de cloruro de sodio en un litro de disolución.
La molaridad se define como la cantidad de sustancia de soluto, expresada en moles, contenida en un cierto volumen de disolución, expresado en litros, es decir: M = n/V. El número de moles de soluto equivale al cociente entre la masa de soluto y la masa de un mol (masa molar) de soluto. Por ejemplo, para conocer la molaridad de una disolución que se ha preparado disolviendo 70 g de cloruro de sodio (NaCl) hasta obtener 2 litros de disolución, hay que calcular el número de moles de NaCl; como la masa molar del cloruro de sodio es la suma de las masas atómicas de sus elementos, es decir, 23 + 35,5 = 58,5 g/mol, el número de moles será 70/58,5 = 1,2 y, por tanto, M = 1,2/2= 0,6 M (0,6 molar).

Bioquímica





Bioquímica, estudio de las sustancias presentes en los organismos vivos y de las reacciones químicas en las que se basan los procesos vitales. Esta ciencia es una rama de la Química y de la Biología. El prefijo bio- procede de bios, término griego que significa ‘vida’. Su objetivo principal es el conocimiento de la estructura y comportamiento de las moléculas biológicas, que son compuestos de carbono que forman las diversas partes de la célula y llevan a cabo las reacciones químicas que le permiten crecer, alimentarse, reproducirse y usar y almacenar energía.
La célula contiene un gran número de moléculas. La estructura de cada molécula determina la reacción química en la que interviene y, por tanto, el papel que desempeña en los procesos vitales celulares. Los tipos más importantes de moléculas biológicas son los ácidos nucleicos, las proteínas, los hidratos de carbono y los lípidos.
Los ácidos nucleicos son responsables del almacenamiento y transferencia de la información genética. Son moléculas grandes formadas por cadenas largas de unas subunidades llamadas nucleótidos, que se disponen según una secuencia exacta. Cada nucleótido está formado por una molécula de azúcar, un grupo fosfato y uno de 4 posibles compuestos nitrogenados llamados bases. Estas subunidades, son 'leídas' por otros componentes de las células y utilizadas como patrones para la fabricación de proteínas.
Las proteínas son moléculas grandes formadas por pequeñas subunidades denominadas aminoácidos. Utilizando sólo 20 aminoácidos distintos, la célula elabora miles de proteínas diferentes, cada una de las cuales desempeña una función altamente especializada. Las proteínas más interesantes para los bioquímicos son las enzimas, moléculas 'trabajadoras' de las células. Estas enzimas actúan como promotores o catalizadores de las reacciones químicas.
Los hidratos de carbono son las moléculas energéticas básicas de la célula. Contienen proporciones aproximadamente iguales de carbono e hidrógeno y oxígeno. Las plantas verdes, algunas bacterias, protozoos y algas utilizan el proceso de la fotosíntesis para formar hidratos de carbono simples (azúcares) a partir de dióxido de carbono, agua y luz solar. Los animales, sin embargo, obtienen sus hidratos de carbono de los alimentos. Una vez que la célula posee hidratos de carbono, puede romperlos para obtener energía química o utilizarlos como base para producir otras moléculas.
Los lípidos son sustancias grasas que desempeñan diversos papeles en la célula. Algunos se almacenan para ser utilizados como combustible de alto valor energético, mientras que otros se emplean como componentes esenciales de la membrana celular.
Las células tienen también muchos otros tipos de moléculas. Estos compuestos desempeñan funciones muy diversas, como el transporte de energía desde una zona de la célula a otra, el aprovechamiento de la energía solar para conducir reacciones químicas, y como moléculas colaboradoras (cofactores) en las acciones enzimáticas. Todas éstas, y la misma célula, se hallan en un estado de variación constante. De hecho, una célula no puede mantenerse viva a menos que esté continuamente formando y rompiendo proteínas, hidratos de carbono y lípidos; reparando los ácidos nucleicos dañados y utilizando y almacenando energía. El conjunto de estos procesos activos y dependientes de la energía se denomina metabolismo. Uno de los objetivos principales de la bioquímica es conocer el metabolismo lo suficiente como para predecir y controlar los cambios celulares. Los estudios bioquímicos han permitido avances en el tratamiento de muchas enfermedades metabólicas, en el desarrollo de antibióticos para combatir las bacterias, y en métodos para incrementar la productividad industrial y agrícola. Estos logros han aumentado en los últimos años con el uso de técnicas de ingeniería genética.

Análisis químico





Cromatografía
Un químico utiliza la cromatografía en fase líquida para analizar una mezcla compleja de sustancias. El cromatógrafo utiliza un medio adsorbente que, al ser colocado en contacto con una muestra, adsorbe sus distintos componentes a diferentes velocidades. De esta forma se separan los componentes de una mezcla. La cromatografía tiene muchas aplicaciones importantes, como la determinación del nivel de contaminantes en el aire, el análisis de medicinas y el análisis de orina y de sangre.

Análisis químico, conjunto de técnicas y procedimientos empleados para identificar y cuantificar la composición química de una sustancia. En un análisis cualitativo se pretende identificar las sustancias de una muestra. En el análisis cuantitativo lo que se busca es determinar la cantidad o concentración en que se encuentra una sustancia específica en una muestra. Por ejemplo, averiguar si una muestra de sal contiene el elemento yodo sería un análisis cualitativo, y medir el porcentaje en masa de yodo de esa muestra constituiría un análisis cuantitativo.
Un análisis efectivo de una muestra suele basarse en una reacción química del componente, que produce una cualidad fácilmente identificable, como color, calor o insolubilidad. Los análisis gravimétricos basados en la medición de la masa de precipitados del componente, y los análisis volumétricos, que dependen de la medición de volúmenes de disoluciones que reaccionan con el componente, se conocen como ‘métodos por vía húmeda’, y resultan más laboriosos y menos versátiles que los métodos más modernos.
Los métodos instrumentales de análisis basados en instrumentos electrónicos cobraron gran importancia en la década de 1950, y hoy la mayoría de las técnicas analíticas se apoyan en estos equipos.
La determinación de la composición química de una sustancia es fundamental en el comercio, en las legislaciones y en muchos campos de la ciencia. Por ello, el análisis químico se diversifica en numerosas formas especializadas.
PREPARACIÓN PARA EL ANÁLISIS
Frecuentemente la tarea de los químicos consiste en analizar materiales tan diversos como acero inoxidable, cerveza, uñas, pétalos de rosa, humo, medicamentos o papel. Para determinar la identidad o cantidad de un elemento de estos materiales, se procede en primer lugar a la toma de la muestra, lo que implica la selección de cantidad y grado de uniformidad de material requeridos para el análisis (además de homogénea, la muestra debe ser representativa). A continuación se separan de la muestra los componentes deseados o aquéllos que puedan interferir en el estudio. El método de separación idóneo dependerá de la naturaleza del componente a analizar y de la muestra en sí. La separación se basa en la posibilidad de utilizar las diferencias existentes en la propiedades físicas y químicas de los componentes. Así, en una mezcla simple de sal y arena es fácil extraer la sal, pues ésta es soluble en agua, mientras que la arena no lo es. En el caso de una mezcla de arena y partículas de hierro, ninguna de las dos partes es soluble en agua, pero el hierro tiene propiedades magnéticas y la arena no.
La cromatografía es el método de separación más usual y tiene varias modalidades dependiendo de la naturaleza de la columna cromatográfica y de la interacción de los componentes de la muestra. Las dos formas más importantes son la cromatografía por filtración de geles, en la que grandes moléculas se separan según su tamaño, y la cromatografía por intercambio iónico, donde se separan los componentes iónicos. En la cromatografía en fase gaseosa son los componentes volátiles los que se separan de la muestra, y en la cromatografía en fase líquida, las pequeñas moléculas neutras de una disolución.
El objeto de la separación es obtener el componente deseado en forma pura, o parcialmente pura, para su determinación analítica, o eliminar otros componentes cuya presencia obstaculizaría la medición, o ambas cosas a la vez. En general, la separación es innecesaria cuando el método de análisis resulta específico o selectivo y responde al componente deseado, ignorando los demás. Por ejemplo, para medir el pH de la sangre con un electrodo de vidrio, no es necesario un proceso previo de separación.
Otro proceso previo para el análisis cualitativo y cuantitativo es la calibración. La respuesta del método analítico y la sensibilidad del equipo mecánico y electrónico empleado respecto al componente deseado debe calibrarse usando un componente puro o una muestra que contenga una cantidad conocida de ese componente.
PRESENTACIÓN Y VERACIDAD DE LOS RESULTADOS
El resultado numérico de un análisis cuantitativo puede establecer la cantidad absoluta del componente o un porcentaje de éste en la muestra. En este último caso puede expresarse como porcentaje en masa, concentración molar (moles de un componente disuelto por litro de disolución) o como ppm (partes por millón en masa). La exactitud de los resultados del análisis queda reflejada en el grado de concordancia con la cantidad real del elemento. La precisión de los resultados la dará la posibilidad de repetir y reproducir el análisis. Los resultados son precisos cuando son fruto de mediciones repetidas y se dan en un estrecho margen de valores. Estos resultados se dice que son altamente reproducibles. La precisión no significa que los resultados sean exactos, ya que parte de los procedimientos de medición pueden desviarlos hacia valores más altos o más bajos que el valor real. A menudo la repetición del análisis encubre estos errores sistemáticos.
Los errores aleatorios tienden a corregirse entre ellos. La exactitud se suele lograr teniendo en cuenta la media de múltiples factores. Según el método empleado, puede ser necesario repetir las mediciones sólo tres o cuatro veces. Cuando en un proceso se conectan ordenadores o computadoras a los instrumentos analíticos, las mediciones se pueden repetir hasta 100.000 veces a gran velocidad; a esta técnica se la denomina señal promedio.
ANÁLISIS INORGÁNICO CUALITATIVO

Análisis cualitativo: marcha analítica
El análisis cualitativo es un método para identificar una sustancia desconocida pasando muestras de la misma por una serie de análisis químicos. La marcha analítica se basa en reacciones químicas conocidas, de forma que cada producto químico añadido analiza un catión específico. Si se produce la reacción prevista, significa que el catión está presente. Si no se produce, el analista pasa al siguiente catión.

Un análisis cualitativo inorgánico sistemático de iones mediante un método por vía húmeda, supone la separación de iones en grupos por reacciones de precipitación selectiva. Se aíslan los iones individuales de los grupos, a través de una reacción de precipitación adicional, y se confirma la identidad del ion con un test de reacción, que produce un determinado precipitado o color. Tanto para cationes (iones con carga positiva) como para aniones (iones con carga negativa), existen diversas fórmulas para obtener estos resultados. En la tabla se muestra un esquema del análisis de cationes de elementos metálicos con repercusiones medioambientales.
ANÁLISIS ORGÁNICO CUALITATIVO
El análisis orgánico se basa en ciertas reacciones químicas que detectan grupos funcionales concretos como alcohol, amina, aldehído, alqueno, éster, ácido carboxílico y éter. Las reacciones de prueba se suelen realizar sin separación previa. Por ejemplo, los alquenos (compuestos que tienen dobles enlaces carbono-carbono) pueden identificarse por la decoloración que producen en una disolución coloreada de bromo. En el análisis cualitativo, tanto orgánico como inorgánico, los métodos instrumentales son los preferidos en la actualidad por ser más sensibles y específicos.
MÉTODOS CUANTITATIVOS POR VÍA HÚMEDA
Son en esencia procesos gravimétricos y volumétricos para sustancias inorgánicas. Un ejemplo de análisis gravimétrico es la determinación de la concentración de ion cloruro en una disolución, mediante la precipitación de cloruro de plata insoluble (AgCl). El precipitado se recoge y se pesa, obteniéndose del análisis resultados muy exactos.
Los procesos volumétricos suelen basarse en reacciones ácido-base, como la valoración de ácido etanoico con una disolución de hidróxido de sodio (véase Ácidos y Bases). Otra reacción empleada con frecuencia es la producida por el ácido etilendiaminotetraacético (EDTA) en disoluciones de metales como el plomo o el mercurio. Las reacciones apropiadas para las valoraciones han de completarse de forma rápida para evitar reacciones colaterales que enmascaren los resultados. Esto resulta más sencillo con reacciones inorgánicas que con procesos químicos de grupos funcionales orgánicos.




TÉCNICAS ESPECTROSCÓPICAS

Espectro del Sol
La radiación procedente del Sol se fotografía con un espectrómetro y se analiza utilizando un espectrógrafo. Las líneas oscuras del espectro se llaman líneas de absorción, y se producen cuando los elementos de la atmósfera del Sol absorben la radiación. Estudiando esas líneas de absorción, los científicos han podido identificar los elementos presentes en el Sol. La línea destacada en la parte roja del espectro es una de las líneas del hidrógeno y las líneas en la parte amarilla indican la presencia de sodio.

La espectroscopia, o estudio de las interacciones de la radiación electromagnética con la materia, es el mayor y más exacto grupo de métodos instrumentales utilizados en los análisis químicos y en toda la ciencia química. El espectro electromagnético se divide en la siguiente gama de longitudes de onda: rayos gamma, rayos X, ultravioletas, visibles, infrarrojos, microondas y ondas radioeléctricas. Las interacciones electromagnéticas con la materia provocan la absorción o emisión de energía a través de la transición de los electrones entre niveles cuánticos o discretos de energía, vibraciones de enlaces, rotaciones moleculares y transición de electrones entre orbitales de átomos y moléculas (véase Átomo; Teoría cuántica). Todas estas interacciones tienen lugar en instrumentos denominados espectrómetros, espectrofotómetros o espectroscopios. Los espectros generados en esos equipos se graban gráfica o fotográficamente en espectrogramas o espectrógrafos, que permiten el estudio de la longitud de onda y la intensidad de la radiación absorbida o emitida por la muestra analizada.
La absorción espectrofotométrica en las gamas visible y ultravioleta del espectro electromagnético es un método espectral cuantitativo común para sustancias orgánicas e inorgánicas. Con esta técnica se mide la transparencia relativa de una disolución, antes y después de hacerla reaccionar con un reactivo colorante. La disminución que se produce en la transparencia de la disolución es proporcional a la concentración del compuesto analizado.
La espectrofotometría de absorción de infrarrojos es adecuada para análisis orgánicos, pues los enlaces en alquenos, ésteres, alcoholes y otros grupos funcionales tienen fuerzas muy diferentes y absorben la radiación de infrarrojos en una gran variedad de frecuencias o energías. Esta absorción se refleja en el espectrógrafo en forma de picos.
La espectroscopia por resonancia magnética nuclear (RMN) depende de la transición entre estados de energía de rotación nuclear por absorción de energía de radiofrecuencia electromagnética. Por ejemplo, en el espectro de RMN del hidrógeno, los diferentes estados químicos del hidrógeno absorben radiación electromagnética a distintas energías. Así, los grupos orgánicos -CH3 y -CH2Cl dan picos muy diferentes y con una excelente resolución. Por todo ello, los espectros de RMN son una herramienta insustituible en el análisis cualitativo para determinar la estructura de las moléculas orgánicas.
La espectroscopia de fluorescencia es lo contrario de la espectrofotometría por absorción. Con esta técnica se consigue que las moléculas emitan luz, según las características energéticas de su estructura, con una intensidad proporcional a la concentración de la muestra. Este método proporciona resultados cuantitativos muy sensibles en algunas moléculas.
En la espectrofotometría de emisión y absorción atómica se calienta la muestra a alta temperatura, y se descompone en átomos e iones que absorben o emiten radiación visible o ultravioleta, con niveles de energías característicos de los elementos implicados. El tono amarillento que presenta una llama cuando se añade sal, se debe a la presencia de sodio en la misma, que emite con fuerza en la zona amarilla del espectro de luz visible. Estos métodos son sobre todo útiles para bajas concentraciones de elementos metálicos, tanto en análisis cualitativos como cuantitativos.
En la espectroscopia de masas, la muestra de un compuesto orgánico se somete al vacío, se vaporiza, se ioniza y se le suministra energía extra, con lo que se logra fragmentar las moléculas individuales. Los fragmentos moleculares se clasifican según su masa respectiva mediante campos magnéticos y eléctricos en un analizador de masas. La forma espectral, o espectro de masas, constituye la huella dactilar de la molécula, pues las moléculas orgánicas presentan modelos de fragmentación exclusivos.
La espectroscopia de fluorescencia de rayos X resulta adecuada para el análisis cualitativo y cuantitativo de elementos metálicos; estos elementos emiten rayos X a energías características al ser bombardeados por una fuente de alta energía de rayos X.
TÉCNICAS RADIOQUÍMICAS
Estos métodos se basan en la detección de radiactividad en forma de partículas alfa y beta y de rayos gamma, que se originan en las desintegraciones nucleares. La radiactividad puede generarse en la muestra bombardeándola con neutrones. Este procedimiento, llamado análisis por activación de neutrones, se utiliza en la industria para identificar ciertos metales de una muestra. El análisis por activación de neutrones tiene la ventaja de ser rápido y automatizado, además de no destruir la muestra.
TÉCNICAS ELECTROQUÍMICAS
Al colocar un electrodo positivo y otro negativo en una disolución con iones, y aplicar a dichos electrodos una diferencia de potencial, los iones con carga positiva (cationes) se desplazan al electrodo negativo o cátodo, mientras que los iones con carga negativa (aniones) lo hacen hacia el electrodo positivo o ánodo. El resultado es que se establece una corriente eléctrica entre los electrodos. La intensidad de esta corriente dependerá de la diferencia de potencial entre los electrodos y de la concentración de iones en la disolución. De hecho, este método instrumental cuantitativo se emplea para medir la concentración de iones en una disolución, y recibe el nombre de conductimetría.
Existe una técnica parecida en la que se utilizan electrodos diseñados para aceptar sólo ciertos iones específicos con el fin de determinar la concentración de iones sodio o calcio o el pH de la disolución analizada. Esta técnica de electrodos que seleccionan determinados iones es frecuente en los análisis clínicos.


Ácidos y bases





Escala de pH: soluciones comunes
El pH de una disolución es una medida de la concentración de iones hidrógeno. Una pequeña variación en el pH significa un importante cambio en la concentración de los iones hidrógeno. Por ejemplo, la concentración de iones hidrógeno en los jugos gástricos (pH = 1) es casi un millón de veces mayor que la del agua pura (pH = 7).


Ácidos y bases, dos tipos de compuestos químicos que presentan características opuestas. Los ácidos tienen un sabor agrio, colorean de rojo el tornasol (tinte rosa que se obtiene de determinados líquenes) y reaccionan con ciertos metales desprendiendo hidrógeno. Las bases tienen sabor amargo, colorean el tornasol de azul y tienen tacto jabonoso. Cuando se combina una disolución acuosa de un ácido con otra de una base, tiene lugar una reacción de neutralización. Esta reacción en la que, generalmente, se forman agua y sal, es muy rápida. Así, el ácido sulfúrico y el hidróxido de sodio NaOH, producen agua y sulfato de sodio: H2SO4 + 2NaOH2H2O + Na2SO4
2

PRIMERAS TEORÍAS
Los conocimientos modernos de los ácidos y las bases parten de 1834, cuando el físico inglés Michael Faraday descubrió que ácidos, bases y sales eran electrólitos por lo que, disueltos en agua se disocian en partículas con carga o iones que pueden conducir la corriente eléctrica. En 1884, el químico sueco Svante Arrhenius (y más tarde el químico alemán Wilhelm Ostwald) definió los ácidos como sustancias químicas que contenían hidrógeno, y que disueltas en agua producían una concentración de iones hidrógeno o protones, mayor que la existente en el agua pura. Del mismo modo, Arrhenius definió una base como una sustancia que disuelta en agua producía un exceso de iones hidroxilo, OH-. La reacción de neutralización sería: H+ + OH-H2O
La teoría de Arrhenius y Ostwald ha sido objeto de críticas. La primera es que el concepto de ácidos se limita a especies químicas que contienen hidrógeno y el de base a las especies que contienen iones hidroxilo. La segunda crítica es que la teoría sólo se refiere a disoluciones acuosas, cuando en realidad se conocen muchas reacciones ácido-base que tienen lugar en ausencia de agua.
3

TEORÍA DE BRØNSTED-LOWRY
Una teoría más satisfactoria es la que formularon en 1923 el químico danés Johannes Brønsted y, paralelamente, el químico británico Thomas Lowry. Esta teoría establece que los ácidos son sustancias capaces de ceder protones (iones hidrógeno H+) y las bases sustancias capaces de aceptarlos. Aún se contempla la presencia de hidrógeno en el ácido, pero ya no se necesita un medio acuoso: el amoníaco líquido, que actúa como una base en una disolución acuosa, se comporta como un ácido en ausencia de agua cediendo un protón a una base y dando lugar al anión (ion negativo) amida: NH3 + baseNH2- + base + H+
El concepto de ácido y base de Brønsted y Lowry ayuda a entender por qué un ácido fuerte desplaza a otro débil de sus compuestos (al igual que sucede entre una base fuerte y otra débil). Las reacciones ácido-base se contemplan como una competición por los protones. En forma de ecuación química, la siguiente reacción de Acido (1) con Base (2) Ácido (1) + Base (2)Ácido (2) + Base (1) se produce al transferir un protón el Ácido (1) a la Base (2). Al perder el protón, el Ácido (1) se convierte en su base conjugada, Base (1). Al ganar el protón, la Base (2) se convierte en su ácido conjugado, Ácido (2). La ecuación descrita constituye un equilibrio que puede desplazarse a derecha o izquierda. La reacción efectiva tendrá lugar en la dirección en la que se produzca el par ácido-base más débil. Por ejemplo, HCl es un ácido fuerte en agua porque transfiere fácilmente un protón al agua formando un ion hidronio: HCl + H2OH3O+ + Cl- En este caso el equilibrio se desplaza hacia la derecha al ser la base conjugada de HCl, Cl-, una base débil, y H3O+, el ácido conjugado de H2O, un ácido débil.
Al contrario, el fluoruro de hidrógeno, HF, es un ácido débil en agua y no transfiere con facilidad un protón al agua: HF + H2OH3O+ + F- Este equilibrio tiende a desplazarse a la izquierda pues H2O es una base más débil que F- y HF es un ácido más débil (en agua) que H3O+. La teoría de Brønsted y Lowry también explica que el agua pueda mostrar propiedades anfóteras, esto es, que puede reaccionar tanto con ácidos como con bases. De este modo, el agua actúa como base en presencia de un ácido más fuerte que ella (como HCl) o, lo que es lo mismo, de un ácido con mayor tendencia a disociarse que el agua: HCl + H2OH3O+ + Cl- El agua también actúa como ácido en presencia de una base más fuerte que ella (como el amoníaco): NH3 + H2ONH4+ + OH-
4

MEDIDA DE LA FUERZA DE ÁCIDOS O BASES
La fuerza de un ácido se puede medir por su grado de disociación al transferir un protón al agua, produciendo el ion hidronio, H3O+. De igual modo, la fuerza de una base vendrá dada por su grado de aceptación de un protón del agua. Puede establecerse una escala apropiada de ácido-base según la cantidad de H3O+ formada en disoluciones acuosas de ácidos, o de la cantidad de OH- en disoluciones acuosas de bases. En el primer caso tendremos una escala pH, y en el segundo una escala pOH. El valor de pH es igual al logaritmo negativo de la concentración de ion hidronio y el de pOH al de la concentración de ion hidroxilo en una disolución acuosa: pH = -log [H3O+] pOH = -log [OH-]
El agua pura tiene un pH de 7,0; al añadirle ácido, la concentración de ion hidronio, [H3O+] aumenta respecto a la del agua pura, y el pH baja de 7,0 según la fuerza del ácido. El pOH del agua pura también es de 7,0, y, en presencia de una base cae por debajo de 7,0.
El químico estadounidense Gilbert N. Lewis expuso una nueva teoría de los ácidos y bases en la que no se requería la presencia de hidrógeno en el ácido. En ella se establece que los ácidos son receptores de uno o varios pares de electrones y las bases son donantes de uno o varios pares de electrones. Esta teoría también tiene la ventaja de que es válida con disolventes distintos del agua y no se requiere la formación de una sal o de pares ácido-base conjugados. Según esto, el amoníaco se comporta como una base, pues es capaz de ceder un par de electrones al trifluoruro de boro para formar un par ácido-base: H3N: + BF3H3N-BF3

Ácidos y bases corrientes

NOMBRE
FÓRMULA
PRESENTE EN
Ácidos


Ácido acético
HC2H3O2
Vinagre
Ácido acetilsalicílico
HC9H7O4
Aspirina
Ácido ascórbico
H2C6H6O6
Vitamina C
Ácido cítrico
H3C6H5O7
Jugo de limón y de otros cítricos
Ácido clorhídrico
HCI
Jugos gástricos
(líquidos digestivos del estómago)
Ácido sulfúrico
H2SO4
Pilas



Bases


Amoníaco
NH3
Limpiadores domésticos
(solución acuosa)
Hidróxido de calcio
Ca(OH)2
Cal apagada
(utilizada en construcción)
Hidróxido de magnesio
Mg(OH)2
Lechada de magnesio
(antiácido y laxante)
Hidróxido de potasio (también
llamado potasa cáustica)
KOH
Jabón suave
Hidróxido de sodio
NaOH
Limpiadores de tuberías y hornos

Entradas populares

Me gusta

Seguidores