El Teléfono




Teléfono, instrumento de comunicación, diseñado para la transmisión de voz y demás sonidos hasta lugares remotos mediante la electricidad, así como para su reproducción. El teléfono contiene un micrófono (transmisor) que recibe el impacto de ondas de sonido. El micrófono transforma las vibraciones en impulsos eléctricos. La corriente eléctrica así generada se transmite a distancia. Un altavoz (receptor) vuelve a convertir la señal eléctrica en sonido.
En el lenguaje coloquial, la palabra “teléfono” también designa todo el sistema al que va conectado un aparato de teléfono. Un sistema que permite enviar no sólo voz, sino también datos, imágenes o cualquier otro tipo de información que pueda codificarse y convertirse en señal sonora. Esta información viaja entre los distintos puntos conectados a la red. La red telefónica se compone de todas las vías de transmisión entre los equipos de los abonados y de los elementos de conmutación que sirven para seleccionar una determinada ruta o grupo de ellas entre dos abonados.

EVOLUCIÓN
En 1854, el inventor francés Charles Bourseul planteó la posibilidad de utilizar las vibraciones causadas por la voz sobre un disco flexible o diafragma, con el fin de activar y desactivar un circuito eléctrico y producir unas vibraciones similares en un diafragma situado en un lugar remoto, que reproduciría el sonido original. Algunos años más tarde, el físico alemán Johann Philip Reis inventó un instrumento que transmitía notas musicales, pero no era capaz de reproducir la voz humana. En 1877, tras haber descubierto que para transmitir la voz sólo se podía utilizar corriente continua, el inventor estadounidense de origen escocés Alexander Graham Bell construyó el primer teléfono capaz de transmitir y recibir voz humana con toda su calidad y su timbre.

Teléfono magnético de Bell
El conjunto básico del invento de Bell estaba formado por un emisor, un receptor y un único cable de conexión. El emisor y el receptor eran idénticos y contenían un diafragma metálico flexible y un imán con forma de herradura dentro de una bobina. Las ondas sonoras que incidían sobre el diafragma lo hacían vibrar dentro del campo del imán. Esta vibración inducía una corriente eléctrica en la bobina, que variaba según las vibraciones del diafragma. La corriente viajaba por el cable hasta el receptor, donde generaba fluctuaciones de la intensidad del campo magnético de éste, haciendo que su diafragma vibrase y reprodujese el sonido original. 

Los teléfonos antiguos usaban un único dispositivo como transmisor y receptor. Sus componentes básicos eran un imán permanente con un cable enrollado que lo convertía en electroimán y un fino diafragma de tela y metal sometido a la fuerza de atracción del imán. La fuerza de la voz, en cuanto ondas de sonido, provocaba un movimiento del diafragma, que a su vez generaba una minúscula corriente alterna en los cables del electroimán. Estos equipos eran capaces de reproducir la voz, aunque tan débilmente que eran poco más que un juguete.

La invención del transmisor telefónico de carbono por Emile Berliner constituye la clave en la aparición del teléfono útil. Consta de unos gránulos de carbono colocados entre unas láminas metálicas denominadas electrodos, una de las cuales es el diafragma, que transmite variaciones de presión a dichos gránulos. Los electrodos conducen la electricidad que circula a través del carbono. Las variaciones de presión originan a su vez una variación de la resistencia eléctrica del carbono. A través de la línea se aplica una corriente continua a los electrodos, y la corriente continua resultante también varía. La fluctuación de dicha corriente a través del transmisor de carbono se traduce en una mayor potencia que la inherente a la onda sonora original. Este efecto se denomina amplificación, y tiene una importancia crucial, pues hasta entonces un transmisor electromagnético sólo era capaz de convertir energía, y siempre producía una energía eléctrica menor que la que contiene la onda sonora.
Teléfonos posteriores
En los receptores de los teléfonos más modernos, el imán pasó a ser plano como una moneda y el campo magnético que actuaba sobre el diafragma de hierro era de mayor intensidad y homogeneidad. Los transmisores llevaban un diafragma muy fino montado debajo de una rejilla perforada. En el centro del diafragma había un pequeño receptáculo con los gránulos de carbono. Las ondas sonoras que atraviesan la rejilla provocan un vaivén del receptáculo. En el movimiento descendente, los gránulos quedan compactados y producen un aumento de la corriente que circula por el transmisor.
Dado que el transmisor de carbono no resultaba práctico a la hora de convertir energía eléctrica en presión sonora, los teléfonos fueron evolucionando hacia receptores separados de los transmisores. Esta disposición permite colocar el transmisor cerca de los labios para recoger el máximo de energía sonora, y el receptor en el auricular, lo cual elimina los molestos ruidos de fondo. En estos teléfonos, el receptor seguía siendo un imán permanente con un arrollamiento de hilo conductor, pero con un diafragma de aluminio sujeto a una pieza metálica. Los detalles del diseño han experimentado enormes mejoras, pero el concepto original continúa permitiendo equipos robustos y eficaces.

Teléfonos actuales
El equivalente eléctrico del imán permanente es una sustancia plástica denominada electreto. Al igual que un imán permanente produce un campo magnético permanente en el espacio, un electreto genera un campo eléctrico permanente en el espacio. Tal como un conductor eléctrico que se mueve en el seno de un campo magnético induce una corriente, el movimiento de un electrodo dentro de un campo eléctrico puede producir una modificación del voltaje entre un electrodo móvil y otro estacionario en la parte opuesta del electreto. Aunque este efecto se conocía de antiguo, fue sólo una curiosidad de laboratorio hasta la aparición de materiales capaces de conservar una carga electrostática durante años. Los transmisores telefónicos actuales se basan actualmente en este efecto, en vez de en la variación de la resistencia de los gránulos de carbono en función de la presión.
Hoy día los micrófonos de carbono han sido sustituidos por micrófonos de electretos, que son más pequeños y baratos, reproducen mejor el sonido y son más robustos que aquéllos. La amplificación de la señal se consigue utilizando circuitos electrónicos (de transistores y/o circuitos integrados). El receptor es normalmente un altavoz de pequeño diámetro, sea de diafragma o de cono vibrante.

PARTES DEL APARATO TELEFÓNICO

El aparato telefónico consta de un transmisor, un receptor, una alarma acústica, un dispositivo marcador y un circuito supresor de efectos locales. Si se trata de un aparato de dos piezas, el transmisor (micrófono) y el receptor (auricular) van montados en el microteléfono, el timbre se halla en la base y el elemento de marcado y el circuito supresor de efectos locales pueden estar en cualquiera de las dos partes, pero, por lo general, van juntos. Los teléfonos más complejos pueden llevar un micrófono y un altavoz en la pieza base, aparte del transmisor y el receptor en el microteléfono. En los teléfonos inalámbricos, el cable del microteléfono se sustituye por un enlace de radio entre éste y la base, aunque sigue teniendo un cable para la línea. Los teléfonos móviles o celulares suelen ser de una sola pieza, y sus componentes en miniatura permiten combinar la base, el micrófono y el auricular en un elemento portátil que se comunica con una estación remota de radio. No precisan línea ni cables para el auricular.

La alarma acústica de los teléfonos se suele denominar timbre, referencia al hecho de que durante la mayor parte de la historia de estos equipos la función de alarma la proporcionaba un timbre eléctrico. La creación de un sustituto electrónico para el timbre, capaz de generar un sonido agradable a la vez que distintivo a un coste razonable, constituyó una tarea sorprendentemente ardua. Para muchas personas, el sonido del timbre sigue siendo preferible al de un zumbador electrónico. Sin embargo, dado que el timbre mecánico exige un cierto volumen físico para resultar eficaz, la tendencia hacia equipos de menor tamaño cada vez impone el uso de alarmas electrónicas en la mayoría de los teléfonos. La sustitución progresiva del timbre permitirá asimismo cambiar, en un futuro próximo, el método actual de activación de la alarma —corriente alterna de 90 voltios (V) y 20 hercios (Hz) a la línea— por técnicas de voltajes menores, más compatibles con los teléfonos transistorizados. Algo similar se está produciendo con el esquema de marcado de los teléfonos.
El marcado telefónico ya ha sufrido toda una evolución a lo largo de su historia. Existen dos formas de marcado, el de pulsos y el de multifrecuencia o tono. El sistema de pulsos está basado en un disco marcador. El disco de marcado tiene un diseño mecánico muy ingenioso; consta de los números 1 al 9 seguidos del 0, colocados en círculo debajo de los agujeros de un disco móvil y perforado. Se coloca el dedo en el agujero correspondiente al número elegido y se hace girar el disco en el sentido de las agujas del reloj hasta alcanzar el tope y a continuación se suelta el disco. Un muelle obliga al disco a volver a su posición inicial y, al mismo tiempo que gira, abre y cierra un conmutador eléctrico tantas veces como gire el disco, para marcar el número elegido. En el caso del 0 se efectúan 10 aperturas, ya que es el último número del disco. El resultado es una serie de pulsos de llamada en la corriente eléctrica que circula entre el aparato telefónico y la centralita. Cada pulso tiene una amplitud igual al voltaje suministrado por la centralita, generalmente 50 V, y dura unos 45 ms (milisegundos, milésimas de segundo). Los equipos de la centralita cuentan estos pulsos y determinan el número que se desea marcar.
Los pulsos eléctricos producidos por el disco giratorio resultaban idóneos para el control de los equipos de conmutación paso-a-paso de las primeras centrales de conmutación automáticas. Sin embargo, el marcado mecánico constituye una de las fuentes principales de costes de mantenimiento, y el proceso de marcado por disco resulta lento, sobre todo en el caso de números largos. La disponibilidad de la amplificación barata y fiable que trajo el transistor aconsejó el diseño de un sistema de marcado basado en la transmisión de unos tonos de potencia bastante pequeña, en vez de los pulsos de marcado de gran potencia. Cada botón de un teclado de multifrecuencia controla el envío de una pareja de tonos. Se utiliza un esquema de codificación “2 de 7” en el que el primer tono corresponde a la fila de una matriz normal de 12 botones y el segundo a la columna (4 filas más 3 columnas necesitan 7 tonos).

Actualmente, la mayoría de los teléfonos llevan botones en vez de disco de marcado y utilizan un sistema de tonos. Las centrales telefónicas modernas están diseñadas para recibir tonos; sin embargo, dado que durante muchos años el sistema de pulsos era el único disponible y que todavía existen teléfonos de este tipo, las centrales pueden seguir recibiendo pulsos. Como un usuario que compra un teléfono puede disponer de una línea antigua que todavía no admita señales de multifrecuencia, los teléfonos de botones disponen de un conmutador que permite seleccionar el envío de pulsos o tonos.
Hay un elemento funcional importante del teléfono que resulta invisible para el usuario: el circuito supresor de efectos locales. Las personas controlan el tono de voz al hablar y ajustan el volumen en consonancia, fenómeno que se denomina “efecto local”. En los primeros teléfonos, el receptor y el transmisor iban conectados directamente entre sí y a la línea. Esto hacía que el usuario oyera su propia voz a través del receptor con mucha más intensidad que cuando no lo tenía pegado al oído. El sonido era mucho más fuerte que el normal porque el micrófono de carbono amplifica la energía sonora al mismo tiempo que la convierte de acústica a eléctrica. Además de resultar desagradable, esto hacía que el usuario bajase el volumen de voz al hablar, dificultando la escucha por parte del receptor.
Los primeros circuitos supresores contenían un transformador junto con otros componentes cuyas características dependían de los parámetros eléctricos de la línea telefónica. El receptor y el transmisor iban conectados a diferentes “puertos del circuito” (en este caso, diferentes arrollamientos del transformador), pero no entre sí. El circuito supresor transfiere energía del transmisor a la línea (aunque parte también a otros componentes), sin que nada pase al receptor. Así se elimina la sensación de que uno grita en su propia oreja. Actualmente, el transmisor y el receptor están aislados entre sí, separados por circuitos electrónicos que eliminan completamente el “efecto local”.

CENTRALES TELEFÓNICAS
En los primeros teléfonos, la corriente estaba generada por una batería. El circuito local tenía, además de la batería y el transmisor, un arrollamiento de transformador, que recibe el nombre de bobina de inducción; el otro arrollamiento, conectado a la línea, elevaba el voltaje de la onda sonora. Las conexiones entre teléfonos eran de tipo manual, a cargo de operadores que trabajaban en centralitas ubicadas en las oficinas centrales de conmutación o centralitas.
A medida que se fueron desarrollando los sistemas telefónicos, las conexiones manuales empezaron a resultar demasiado lentas y laboriosas. Esto fue el detonante para la construcción de una serie de dispositivos mecánicos y electrónicos que permitiesen las conexiones automáticas (véase Electrónica).
En la actualidad, ya no existen prácticamente teléfonos atendidos por centralitas manuales. Todos los abonados son atendidos por centrales automáticas. En este tipo de central, las funciones de los operadores humanos las realizan los equipos de conmutación. Un relé de corriente de línea de un circuito sustituyó al cuadro de conexión manual de luz de la centralita, y un conmutador de cruce hace las funciones de los cables.
Los equipos electrónicos de la central de conmutación se encargan de traducir automáticamente el número marcado, sea por sistema de pulsos o de tonos, y de dirigir la llamada a su destino.
La llamada telefónica se inicia cuando la persona levanta el microteléfono y espera el tono de llamada. Esto provoca el cierre de un conmutador eléctrico. El cierre de dicho conmutador activa el flujo de una corriente eléctrica por la línea de la persona que efectúa la llamada, entre la ubicación de ésta y el edificio que alberga la centralita automática, que forma parte del sistema de conmutación. Se trata de una corriente continua que no cambia su sentido de flujo, aun cuando pueda hacerlo su intensidad o amplitud. La central detecta dicha corriente y devuelve un tono de llamada, una combinación concreta de dos notas para que resulte perfectamente detectable, tanto por los equipos como por las personas.
Una vez escuchado el tono de llamada, la persona marca una serie de números mediante los botones del auricular o del equipo de base. Esta secuencia es exclusiva de otro abonado, la persona a quien se llama. El equipo de conmutación de la central elimina el tono de llamada de la línea tras recibir el primer número y, una vez recibido el último, determina si el número con el que se quiere contactar pertenece a la misma central o a otra diferente. En el primer caso, se aplican una serie de intervalos de corriente de llamada a la línea del receptor de la llamada. La corriente de llamada es corriente alterna de 20 Hz, que fluye en ambos sentidos 20 veces por segundo. El teléfono del usuario tiene una alarma acústica que responde a la corriente de llamada, normalmente mediante un sonido perceptible. Cuando se contesta el teléfono levantando el auricular, comienza a circular una corriente continua por su línea que es detectada por la central. Ésta deja de aplicar la corriente de llamada y establece una conexión entre la persona que llama y la llamada, que es la que permite hablar.

Las centrales telefónicas forman una red jerárquica. Si el código del número marcado no pertenece a la misma central, pero pertenece a otra central del mismo nivel y área geográfica, se establece una conexión directa entre ambas centrales. Sin embargo, si el número marcado pertenece a una rama distinta de la jerarquía hay que establecer una conexión entre la primera central y aquella central de conmutación de mayor nivel común a ambas y entre ésta y la segunda central. Las centrales de conmutación están diseñadas para encontrar el camino más corto disponible entre las dos centrales. Una vez que la conexión entre las dos centrales está establecida, la segunda central activa la alarma del correspondiente receptor como si se tratara de una llamada local.
Las centrales automáticas de relés están siendo sustituidas por centrales digitales controladas por computadora. La tecnología de estado sólido ha permitido que estas centrales puedan procesar las llamadas en un tiempo de una millonésima de segundo, por lo que se pueden procesar simultáneamente grandes cantidades de llamadas. El circuito de entrada convierte, en primer lugar, la voz de quien llama a impulsos digitales. Estos impulsos se transmiten entonces a través de la red mediante sistemas de alta capacidad, que conectan las diferentes llamadas en base a operaciones matemáticas de conmutación computerizadas. Las instrucciones para el sistema se hallan almacenadas en la memoria de una computadora. El mantenimiento de los equipos se ha simplificado gracias a la duplicidad de los componentes. Cuando se produce algún fallo, entra automáticamente en funcionamiento una unidad de reserva para manejar las llamadas. Gracias a estas técnicas, el sistema puede efectuar llamadas rápidas, tanto locales como a larga distancia, encontrando con rapidez la mejor ruta disponible
.
VÍAS DE TRANSMISIÓN
Los primeros sistemas telefónicos utilizaban cables de acero o de cobre para transmitir la señal eléctrica. Sin embargo, a medida que el volumen de llamadas y la distancia entre las centrales de conmutación creció, fue necesario utilizar otras vías de transmisión. Las más usadas son el cable coaxial y submarino, por radio (sea por microondas o por satélite) y hoy día la fibra óptica. La conexión entre las centrales telefónicas y los abonados se realizan todavía utilizando un par de cables de cobre para cada abonado. Sin embargo, en algunas grandes ciudades ya se han empezado a sustituir éstos por fibra óptica.
Telefonía por onda portadora
Utilizando frecuencias superiores al rango de voz, que va desde los 4.000 hasta varios millones de ciclos por segundo, o hercios, se pueden transmitir simultáneamente hasta 13.200 llamadas telefónicas por una misma conducción (cable coaxial, cable submarino, microondas…). Las técnicas de telefonía por onda portadora también se utilizan para enviar mensajes telefónicos a través de las líneas normales de distribución sin interferir con el servicio ordinario. Debido al crecimiento de tamaño y complejidad de los sistemas, se utilizan amplificadores de estado sólido, denominados repetidores, para amplificar la señal a intervalos regulares.

Cable coaxial
El cable coaxial, que apareció en 1936, utiliza una serie de conductores para soportar un gran número de circuitos. El cable coaxial moderno está fabricado con tubos de cobre de 0,95 cm de diámetro. Cada uno de ellos lleva, justo en el centro del tubo, un hilo fino de cobre sujeto con discos plásticos aislantes separados entre sí unos 2,5 cm. El tubo y el hilo tienen el mismo centro, es decir, son coaxiales. Los tubos de cobre protegen la señal transmitida de posibles interferencias eléctricas y evitan pérdidas de energía por radiación. Un cable, compuesto por 22 tubos coaxiales dispuestos en anillos encastrados en polietileno y plomo, puede transportar simultáneamente 132.000 conversaciones telefónicas.
Cables submarinos
El servicio telefonía transoceánica se implantó comercialmente en 1927 utilizando transmisión por radio. Sin embargo, el problema de la amplificación frenó el tendido de cables telefónicos hasta 1956, año en que entró en servicio el primer cable telefónico submarino transoceánico del mundo, que conectaba Terranova y Escocia utilizando cables coaxiales.
Telefonía por microondas

En este método de transmisión, las ondas de radio que se hallan en la banda de frecuencias muy altas, y que se denominan microondas, se utilizan como portadoras de señales telefónicas y se transmiten de estación a estación. Dado que la transmisión de microondas exige un camino expedito entre estación emisora y receptora, la distancia media entre estaciones repetidoras es de unos 40 km. Un canal de microondas puede transmitir hasta 600 conversaciones telefónicas.

Telefonía por satélite

En 1969 se completó la primera red telefónica global en base a una serie de satélites en órbitas estacionarias a una distancia de la Tierra de 35.880 km. Estos satélites van alimentados por células de energía solar. Las llamadas transmitidas desde una antena terrestre se amplifican en el satélite y se retransmiten a estaciones terrestres lejanas. La integración de los satélites y los equipos terrestres permite dirigir llamadas entre diferentes continentes con la misma facilidad que entre lugares muy próximos. Gracias a la digitalización de las transmisiones, los satélites de la serie global Intelsat pueden retransmitir simultáneamente hasta 33.000 llamadas, así como diferentes canales de televisión.

Un único satélite no serviría para realizar una llamada, por ejemplo, entre Nueva York y Hong Kong, pero dos sí. Incluso teniendo en cuenta el coste de un satélite, esta vía resulta más barata de instalar y mantener por canal que la ruta equivalente utilizando cables coaxiales tendidos por el fondo del mar. En consecuencia, para grandes distancias se utilizan en todo lo posible los enlaces por satélite.
Sin embargo, los satélites presentan una desventaja importante. Debido a la gran distancia hasta el satélite y la velocidad limitada de las ondas de radio, hay un retraso apreciable en las respuestas habladas. Por eso, muchas llamadas sólo utilizan el satélite en un sentido de la transmisión (por ejemplo, de Nueva York hacia Madrid) y un enlace terrestre por microondas o cable coaxial en el otro sentido. Un enlace vía satélite para ambos sentidos resultaría irritante para dos personas conversando entre Nueva York y Hong Kong, ya que apenas podrían efectuar interrupciones, cosa muy frecuente en las conversaciones, y además se verían afectadas por el gran retraso (más de un segundo) en la respuesta de la otra persona.
Fibras ópticas

Uno de los grandes avances en las comunicaciones ha sido el uso de señales digitales. En telefonía, la señal se digitaliza al llegar a la central de conmutación. La comunicación entre centrales telefónicas es digital, con lo que se reduce el ruido y la distorsión y se mejora la calidad y el capacidad.
Los cables coaxiales se están sustituyendo progresivamente por fibras ópticas de vidrio. Los mensajes se codifican digitalmente en impulsos de luz que se transmiten a grandes distancias. Un cable de fibra puede tener hasta 50 pares de fibras, y cada par soporta hasta 4.000 circuitos de voz. El fundamento de la nueva tecnología de fibras ópticas es el láser que aprovecha la región visible del espectro electromagnético, donde las frecuencias son miles de veces superiores a las de la radio y, por consiguiente, pueden transportar un volumen mucho mayor de información. El diodo emisor de luz (LED), un dispositivo más sencillo, también se utiliza pues resulta adecuado para la mayoría de las funciones de transmisión.
Un cable de fibra óptica, el TAT 8, transporta más del doble de circuitos transatlánticos que los existentes en la década de 1980. Formando parte de un sistema que se extiende desde Nueva Jersey hasta Inglaterra y Francia, puede transmitir hasta 50.000 conversaciones a la vez. Este tipo de cables sirven también de canales para la transmisión a alta velocidad de datos informáticos, siendo más segura que la que proporcionan los satélites de comunicaciones (véase Comunicaciones vía satélite). Otro avance importante en las telecomunicaciones, el TAT 9, un cable de fibra con mucha mayor capacidad, entró en funcionamiento en 1992 y puede transmitir simultáneamente 75.000 llamadas.

La mayoría de las grandes ciudades están hoy enlazadas por una combinación de conexiones por microondas, cable coaxial, fibra óptica y satélites. La capacidad de cada uno de los sistemas depende de su antigüedad y el territorio cubierto (los cables submarinos están diseñados de forma muy conservadora y tienen menor capacidad que los cables de superficie), pero, en general, se pueden clasificar de la siguiente forma: la digitalización simple a través de un par paralelo proporciona decenas de circuitos por par; la coaxial permite cientos de circuitos por par y miles por cable; las microondas y los satélites dan miles de circuitos por enlace, y la fibra óptica permite hasta decenas de miles de circuitos por fibra. La capacidad de cada tipo de sistema ha ido aumentando notablemente desde su aparición debido a la continua mejora de la ingeniería.
TELEFONÍA Y RADIODIFUSIÓN
Los equipos de telefonía de larga distancia se pueden también utilizar para transportar programas de radio y televisión a grandes distancias entre estaciones dispersas para su difusión simultánea. En algunos casos, la parte de audio de los programas de televisión se puede transmitir mediante circuitos de cables a frecuencias audio o a las frecuencias de portadora utilizadas para transmitir las conversaciones telefónicas. Las imágenes de televisión se transmiten por medio de cables coaxiales, microondas y circuitos de satélites.

VIDEOTELÉFONO
El primer videoteléfono de dos vías fue presentado en 1930 por el inventor estadounidense Herbert Eugene Ives en Nueva York. El videoteléfono se puede conectar a una computadora para visualizar informes, diagramas y esquemas en lugares remotos. Permite así mismo celebrar reuniones cara a cara de personas en diferentes ciudades y puede actuar de enlace entre centros de reuniones en el seno de una red de grandes ciudades. Los videoteléfonos ya están disponibles comercialmente y se pueden utilizar en líneas nacionales para llamadas cara a cara. Funciones análogas también existen ya en los ordenadores o computadoras conectadas a la red telefónica y equipadas a tal fin.

CORREO DE VOZ
El correo de voz permite grabar los mensajes recibidos para su posterior reproducción en caso de que la llamada no sea atendida. En las versiones más avanzadas de correo de voz, el usuario puede grabar un mensaje que será transmitido más adelante a lo largo del día.
El correo de voz se puede adquirir en la compañía telefónica como un servicio de conmutación o mediante la compra de un contestador automático. Por lo general, es un equipo telefónico ordinario dotado de funciones de grabación, reproducción y detección automática de llamada. Si la llamada entrante se contesta en cualquier teléfono de la línea antes de que suene un número determinado de veces, el contestador no actúa. Sin embargo, cumplido el número de llamadas, el contestador automático procede a descolgar y reproduce un mensaje grabado previamente, informando que el abonado no puede atender la llamada en ese momento e invitando a dejar un mensaje grabado.
El dueño del contestador automático es avisado de la presencia de mensajes grabados mediante una luz o un pitido audible, pudiendo recuperar más tarde el mensaje. La mayoría de los contestadores automáticos y todos los servicios de operadora permiten así mismo al usuario recuperar los mensajes grabados desde un lugar alejado marcando un código determinado cuando haya obtenido respuesta de su equipo.

TELEFONÍA MÓVIL O CELULAR
Los teléfonos móviles o celulares son en esencia unos radioteléfonos de baja potencia (véase Radio celular). Las llamadas pasan por transmisores de radio colocados dentro de pequeñas unidades geográficas llamadas células. Las células cubren la casi totalidad del territorio, pero especialmente las zonas habitadas y las vías de comunicación (como carreteras y vías de ferrocarril) desde donde se realizan la mayoría de las llamadas. Los transmisores de radio están conectados a la red telefónica, lo que permite la comunicación con teléfonos normales o entre sí.
Células contiguas operan en distintas frecuencias pera evitar interferencias. Dado que las señales de cada célula son demasiado débiles para interferir con las de otras células que operan en las mismas frecuencias, se puede utilizar un número mayor de canales que en la transmisión con radiofrecuencia de alta potencia. Cuando un usuario pasa de una célula a otra, la transmisión tiene que cambiar de transmisor y de frecuencia. Este cambio se debe realizar a alta velocidad para que un usuario que viaja en un automóvil o tren en movimiento pueda continuar su conversación sin interrupciones.
La modulación en frecuencia de banda estrecha es el método más común de transmisión y a cada mensaje se le asigna una portadora exclusiva para la célula desde la que se transmite. Hoy en día ya existen teléfonos móviles multibanda que pueden utilizar dos o tres portadoras a la vez, con lo que se reduce la posibilidad de que el teléfono pierda la señal.
Los teléfonos móviles digitales se pueden utilizar en cualquier país del mundo que utilice el mismo sistema de telefonía móvil. También existen teléfonos móviles que permiten el acceso a Internet, la transmisión y recepción de fax, e incluso videoteléfono.

TENDENCIAS TECNOLÓGICAS
La sustitución de los cables coaxiales transoceánicos por cables de fibra óptica continúa en la actualidad. Los avances de la tecnología de circuitos integrados y de los semiconductores han permitido diseñar y comercializar teléfonos y centrales de conmutación que no sólo producen calidad de voz de alta fidelidad, sino que ofrecen toda una serie de funciones como números memorizados, desvío de llamadas, llamadas multiusuario, espera de llamadas e identificación del número que llama.
Tradicionalmente, el teléfono se ha utilizado para transmitir la voz, sin embargo, cada vez se usa más para otros tipos de transmisiones. Se pueden transmitir imágenes por teléfono utilizando el fax. Dos computadoras se pueden comunicar entre sí por teléfono utilizando el módem. Este tipo de comunicación se esta popularizando pues permite el acceso a Internet utilizando simplemente un módem conectado a la línea telefónica.
Dado que las comunicaciones entre centrales telefónicas está ya prácticamente digitalizada, el futuro de la telefonía incluirá la digitalización de la conexión entre los usuarios y las centrales utilizando fibras ópticas de bajo coste. La señal digital no sufre distorsión o ruido. Utilizando la fibra óptica local, la RDSI (Red Digital de Servicios Integrados) permitirá el acceso directo a múltiples servicios, como teléfono, videoteléfono, televisión digital o comunicación de datos con un solo conector.

Alexander Graham Bell
Alexander Graham Bell (1847-1922), inventor de origen inglés, debe su fama al invento del teléfono y a sus estudios para limitar los efectos de la sordera.
Bell nació el 3 de marzo de 1847 en Edimburgo y estudió en las universidades de Edimburgo y Londres. Emigró a Canadá en 1870 y llegó a Estados Unidos en 1871. Aquí comenzó dando clases a sordos y divulgando el sistema denominado 'lenguaje visible'. Este sistema, que fue desarrollado por su padre, el educador escocés Alexander Melville Bell, demuestra cómo se utilizan los labios, la lengua y la garganta en la articulación del sonido. En 1872 Bell fundó una escuela para sordos en Boston, Massachusetts, que posteriormente se integró en la Universidad de Boston, donde Bell fue nombrado profesor de fisiología vocal. En 1882 adoptó la nacionalidad estadounidense.

Desde los 18 años, Bell había trabajado sobre la idea de la transmisión del habla. En 1874, mientras trabajaba en un telégrafo múltiple, desarrolló las ideas básicas de lo que sería el teléfono. Sus experimentos con su ayudante Thomas Watson los probó definitivamente con éxito el 10 de marzo de 1876. Especialmente una demostración, en 1876 durante la Exposición del Centenario en Filadelfia (Pensilvania), lanzó su invento a todo el mundo y le llevó a organizar en 1877 la Compañía de Teléfonos Bell.
En 1880 Francia concedió a Bell el premio Volta, dotado con 50.000 francos, por su invento. Con este dinero, fundó el Laboratorio Volta en la ciudad de Washington, donde el mismo año, él y sus socios inventaron el fotófono, que transmite sonidos por rayos de luz. Otros inventos suyos son: el audiómetro —utilizado para medir la agudeza de oído— la balanza de inducción —utilizada para localizar objetos metálicos en el cuerpo humano— y el primer cilindro de cera para grabar, introducido en 1886. El cilindro, junto con el disco de cera grasa, sentó las bases del gramófono moderno.
Bell fue uno de los cofundadores de la National Geographic Society y ejerció como presidente desde 1896 hasta 1904. También en 1883 fundó la revista Science.
Después de 1895, el interés de Bell se dirigió fundamentalmente a la aeronáutica. Muchos de sus inventos en este campo los probó en su residencia de verano en la isla de Cape Breton en Canadá. Sus estudios comenzaron con la construcción de grandes cometas o papalotes y en 1907 concibió una capaz de transportar a una persona. Con un grupo de socios, entre ellos el inventor y aviador estadounidense Glenn Hammond Curtiss, Bell desarrolló el alerón, una sección móvil de un ala de avión que controla el balanceo. También desarrollaron el dispositivo de aterrizaje de tres ruedas, lo que permitió por primera vez el despegue y el aterrizaje en un campo de aviación. Al aplicar los principios aeronáuticos a la propulsión náutica, este grupo comenzó a trabajar en el patín aerodeslizador, que se desliza sobre el agua a gran velocidad. Su hydrodrome con su tamaño definitivo, desarrollado en 1917, alcanzó velocidades superiores a los 113 km/h y durante muchos años fue el barco más rápido del mundo.

Los continuados estudios de Bell sobre las causas y la herencia de la sordera condujeron a experimentos en eugenesia, incluida la cría de ganado, y le llevaron a escribir su libro Duración de la vida y condiciones relacionadas con la longevidad (1918). Murió el 2 de agosto de 1922, en Baddeck, donde el gobierno canadiense conserva un museo que contiene muchos de sus inventos originales.

Microordenador




Microordenador o Microcomputadora, dispositivo de computación de sobremesa o portátil, que utiliza un microprocesador como su unidad central de procesamiento o CPU. Los microordenadores más comunes son las computadoras u ordenadores personales, PC, computadoras domésticas, computadoras para la pequeña empresa o micros. Las más pequeñas y compactas se denominan laptops o portátiles e incluso palm tops por caber en la palma de la mano. Cuando los microordenadores aparecieron por primera vez, se consideraban equipos para un solo usuario, y sólo eran capaces de procesar 4, 8 o 16 bits de información a la vez. Con el paso del tiempo, la distinción entre microcomputadoras y grandes computadoras corporativas o mainframes (así como los sistemas corporativos de menor tamaño denominados minicomputadoras) ha perdido vigencia, ya que los nuevos modelos de microordenadores han aumentado la velocidad y capacidad de procesamiento de datos de sus CPUs a niveles de 32 bits y múltiples usuarios.
Los microordenadores están diseñados para uso doméstico, didáctico y funciones de oficina. En casa pueden servir como herramienta para la gestión doméstica (creación de documentos personales, bases de datos de diversos tipos y otras cuestiones, como el cálculo de impuestos) y como equipo de diversión (juegos de computadora, catálogos de discos y libros...). Los escolares pueden utilizarlos para hacer sus deberes y como fuente de información; de hecho, muchas escuelas utilizan ya estos dispositivos en la docencia de las diversas materias y como medio para obtener cultura informática. Las pequeñas empresas suelen adquirir microcomputadoras para el procesamiento de textos, para la contabilidad y el almacenamiento y gestión de correo electrónico.
ORÍGENES
El desarrollo de las microcomputadoras fue posible gracias a dos innovaciones tecnológicas en el campo de la microelectrónica: el circuito integrado, también llamado IC (acrónimo de Integrated Circuit), que fue desarrollado en 1959, y el microprocesador, que apareció por primera vez en 1971. El IC permite la miniaturización de los circuitos de memoria de la computadora y el microprocesador redujo el tamaño de la CPU al de una sola pastilla o chip de silicio. A esta época pertenece el microprocesador Intel 4004, una computadora en un chip.
El hecho de que la CPU calcule, realice operaciones lógicas, contenga instrucciones de operación y administre los flujos de información favoreció el desarrollo de sistemas independientes que funcionaran como microordenadores completos. El primer sistema de sobremesa de tales características, diseñado específicamente para uso personal, fue presentado en 1974 por Micro Instrumentation Telemetry Systems (MITS). El editor de Popular Electronics, una revista de divulgación tecnológica, convenció a los propietarios de este sistema para crear y vender por correo un equipo de computadora a través de su revista. El precio de venta de esta computadora, que recibió el nombre de Altair 8800, era relativamente asequible.
La demanda de este equipo fue inmediata, inesperada y totalmente abrumadora. Cientos de pequeñas compañías respondieron a ella produciendo computadoras para el nuevo mercado. La primera gran empresa de electrónica que fabricó y vendió computadoras personales, Tandy Corporation (Radio Shack), introdujo su modelo en 1977. Rápidamente dominó el sector, gracias a la combinación de dos atractivas características: un teclado y un terminal de pantalla de rayos catódicos. También se hizo popular porque se podía programar y el usuario podía guardar la información en una cinta de casete.
Poco tiempo después de la presentación del nuevo modelo de Tandy, dos ingenieros programadores, Stephen Wozniak y Steven Jobs, crearon una nueva compañía de fabricación de computadoras llamada Apple Computers. Algunas de las nuevas características que introdujeron en sus microcomputadoras fueron la memoria expandida, programas en disco y almacenamiento de datos de bajo precio y los gráficos en color. Apple Computers se convirtió en la compañía de más rápido crecimiento en la historia empresarial de los Estados Unidos. Esto animó a un gran número de fabricantes de microordenadores para entrar en este campo. Antes de finalizar la década de 1980, el mercado de los ordenadores personales se encontraba ya claramente definido.
En 1981 IBM presentó su propio modelo de microordenador, llamado IBM PC, para el que eligió el sistema operativo PC-DOS, de la recién creada empresa Microsoft Corporation. Aunque no incorporaba la tecnología de computación más avanzada, el PC se convirtió en un hito de este sector en ebullición. Demostró que la industria de los microordenadores era algo más que una moda pasajera y que, de hecho, los microordenadores eran una herramienta necesaria en el mundo empresarial. La incorporación de un microprocesador de 16 bits en el PC inició el desarrollo de micros más veloces y potentes. Su arquitectura abierta y la existencia de un sistema operativo al que podían acceder todos los demás fabricantes de computadoras, abrieron el camino para la estandarización de la industria. Pronto, la aparición de ordenadores clónicos trajo consigo el abaratamiento en los precios de estas máquinas. Columbia Data Products lanzó el primer IBM PC clónico en 1982; le seguiría Compacq con su propia versión, y a éstos, otros varios que contribuyeron a popularizar las máquinas. El mundo de los ordenadores personales se organizó a partir de entonces en dos grupos: el de los ordenadores compatibles IBM, fabricados por múltiples empresas, y el de los ordenadores Apple, desarrollados sólo por Apple Computer.
DESARROLLOS POSTERIORES
A mediados de la década de 1980 se produjeron una serie de desarrollos especialmente importantes para el auge de los microordenadores. Uno de ellos fue la introducción de un potente ordenador de 32 bits capaz de ejecutar sistemas operativos multiusuario avanzados a gran velocidad. Esta novedad redujo las diferencias entre micro y miniordenadores, dotando a cualquier equipo de sobremesa de una oficina con la suficiente potencia informática como para satisfacer las demandas de cualquier pequeña empresa y de la mayoría de las empresas medianas.
Otra innovación fue la introducción de métodos más sencillos y “amigables” para el control de las operaciones de las microcomputadoras. Al sustituir el sistema operativo convencional por una interfaz gráfica de usuario, las computadoras permiten al usuario seleccionar iconos —símbolos gráficos que representan funciones de la computadora— en la pantalla, en lugar de requerir la introducción de los comandos escritos correspondientes. Hoy ya existen nuevos sistemas controlados por la voz, pudiendo los usuarios operar sobre sus microordenadores utilizando las palabras y la sintaxis del lenguaje hablado.
El resultado de toda esta evolución es la existencia de ordenadores de gran potencia y con capacidades multimedia que se han convertido, no sólo en una herramienta de gran interés para la empresa, sino también en un elemento de ocio. El fenómeno Internet ha experimentado la explosión de los últimos tiempos debido, en gran medida, a la existencia de ordenadores personales en muchos hogares de nuestro entorno.
La miniaturización ha hecho aparecer también ordenadores personales portátiles de amplias prestaciones, algunos de tamaño tan pequeño que caben en la palma de la mano. Su interconexión con otros elementos móviles como el teléfono, hace prever una nueva existencia para todos estos dispositivos.

UNIVAC




UNIVAC, en informática, acrónimo de UNIVersal Automatic Computer (Computadora Automática Universal), primer ordenador digital electrónico universal diseñado para uso comercial. Fue desarrollado por John William Mauchly y John Presper Eckert entre 1946 y 1951, quienes en 1946 habían fundado la empresa Eckert-Mauchly Corporation, después de haber diseñado dos de los primeros ordenadores digitales plenamente operativos, el ENIAC y el EDVAC, que empleaban válvulas de vacío. El UNIVAC también funcionaba con estos dispositivos, y para su entrada y salida de datos utilizaba fundamentalmente cinta magnética. Fue la primera computadora capaz de procesar con la misma facilidad información numérica y alfabética.
Aunque el UNIVAC fue el primer ordenador que tuvo éxito comercial, pronto se diseñaron otros, como el Ferranti Mark I, que de hecho comenzó a utilizarse un mes antes que el UNIVAC. El primer UNIVAC se instaló en 1951 en la Oficina del Censo de Estados Unidos, departamento para el que realizó uno de sus logros más importantes: la predicción del ganador de las elecciones presidenciales norteamericanas de 1952, Dwight D. Eisenhower. En total se vendieron 48 unidades y el UNIVAC demostró que había un mercado para los ordenadores, lo que convenció a otras empresas para fabricarlos. La compañía responsable de la manufactura del UNIVAC fue vendida a la Remington Rand en 1950, que más tarde se convertiría en Sperry Rand, y a mediados de la década fue adquirida por la International Business Machines Corporation (IBM).

Unidad central de proceso




Unidad central de proceso o UCP (conocida por sus siglas en inglés, CPU), circuito microscópico que interpreta y ejecuta instrucciones. La CPU se ocupa del control y el proceso de datos en las computadoras. Generalmente, la CPU es un microprocesador fabricado en un chip, un único trozo de silicio que contiene millones de componentes electrónicos. El microprocesador de la CPU está formado por una unidad aritmético-lógica que realiza cálculos y comparaciones, y toma decisiones lógicas (determina si una afirmación es cierta o falsa mediante las reglas del álgebra de Boole); por una serie de registros donde se almacena información temporalmente, y por una unidad de control que interpreta y ejecuta las instrucciones. Para aceptar órdenes del usuario, acceder a los datos y presentar los resultados, la CPU se comunica a través de un conjunto de circuitos o conexiones llamado bus. El bus conecta la CPU a los dispositivos de almacenamiento (por ejemplo, un disco duro), los dispositivos de entrada (por ejemplo, un teclado o un mouse) y los dispositivos de salida (por ejemplo, un monitor o una impresora).

FUNCIONAMIENTO DE LA CPU
Cuando se ejecuta un programa, el registro de la CPU, llamado contador de programa, lleva la cuenta de la siguiente instrucción, para garantizar que las instrucciones se ejecuten en la secuencia adecuada. La unidad de control de la CPU coordina y temporiza las funciones de la CPU, tras lo cual recupera la siguiente instrucción desde la memoria. En una secuencia típica, la CPU localiza la instrucción en el dispositivo de almacenamiento correspondiente. La instrucción viaja por el bus desde la memoria hasta la CPU, donde se almacena en el registro de instrucción. Entretanto, el contador de programa se incrementa en uno para prepararse para la siguiente instrucción. A continuación, la instrucción actual es analizada por un descodificador, que determina lo que hará la instrucción. Cualquier dato requerido por la instrucción es recuperado desde el dispositivo de almacenamiento correspondiente y se almacena en el registro de datos de la CPU. A continuación, la CPU ejecuta la instrucción, y los resultados se almacenan en otro registro o se copian en una dirección de memoria determinada.

Ordenador de 32 bits




Ordenador de 32 bits o Computadora de 32 bits, un ordenador o computadora que maneja la información en grupos de 32 bits. Describir una computadora como máquina de 32 bits puede hacer referencia a la longitud o tamaño de la palabra (unidad de trabajo básica) de su microprocesador o bien, más comúnmente, al número de bits transferidos a través del bus de datos de la computadora (la trayectoria de datos por la que viaja la información hacia y desde el microprocesador) en un determinado momento. Por consiguiente, un microprocesador de 32 bits tiene un tamaño de palabra de 32 bits, o 4 bytes; un bus de datos de 32 bits tiene 32 líneas de datos, por lo que transporta la información dentro del sistema en conjuntos de 32 bits cada vez. Los modelos de Apple a partir del Macintosh II y sus versiones posteriores son unas máquinas de 32 bits, tanto en términos de la longitud de palabra de su microprocesador como del tamaño del bus de datos, al igual que el IBM PS/2 modelo 80 y similares basados en el microprocesador Intel 80386. Actualmente la práctica totalidad de los ordenadores o computadoras personales se basan en arquitecturas de 32 bits; los ordenadores o computadoras de alto rango, como los basados en el Intel IA64 Itanium y casi todos los miniordenadores y supercomputadoras se basan en arquitecturas de 64 bits.

Ordenador




Ordenador o Computadora, dispositivo electrónico capaz de recibir un conjunto de instrucciones y ejecutarlas realizando cálculos sobre los datos numéricos, o bien compilando y correlacionando otros tipos de información.

El mundo de la alta tecnología nunca hubiera existido de no ser por el desarrollo del ordenador o computadora. Toda la sociedad utiliza estas máquinas, en distintos tipos y tamaños, para el almacenamiento y manipulación de datos. Los equipos informáticos han abierto una nueva era en la fabricación gracias a las técnicas de automatización, y han permitido mejorar los sistemas modernos de comunicación. Son herramientas esenciales prácticamente en todos los campos de investigación y en tecnología aplicada.

TIPOS DE ORDENADORES O COMPUTADORAS

En la actualidad se utilizan dos tipos principales de ordenadores: analógicos y digitales. Sin embargo, el término ordenador o computadora suele utilizarse para referirse exclusivamente al tipo digital. Los ordenadores analógicos aprovechan la similitud matemática entre las interrelaciones físicas de determinados problemas y emplean circuitos electrónicos o hidráulicos para simular el problema físico. Los ordenadores digitales resuelven los problemas realizando cálculos y tratando cada número dígito por dígito.

Las instalaciones que contienen elementos de ordenadores digitales y analógicos se denominan ordenadores híbridos. Por lo general se utilizan para problemas en los que hay que calcular grandes cantidades de ecuaciones complejas, conocidas como integrales de tiempo. En un ordenador digital también pueden introducirse datos en forma analógica mediante un convertidor analógico digital, y viceversa (convertidor digital a analógico).

Ordenadores analógicos

El ordenador analógico es un dispositivo electrónico o hidráulico diseñado para manipular la entrada de datos en términos de, por ejemplo, niveles de tensión o presiones hidráulicas, en lugar de hacerlo como datos numéricos. El dispositivo de cálculo analógico más sencillo es la regla de cálculo, que utiliza longitudes de escalas especialmente calibradas para facilitar la multiplicación, la división y otras funciones. En el típico ordenador analógico electrónico, las entradas se convierten en tensiones que pueden sumarse o multiplicarse empleando elementos de circuito de diseño especial. Las respuestas se generan continuamente para su visualización o para su conversión en otra forma deseada.

Ordenadores digitales

Todo lo que hace un ordenador digital se basa en una operación: la capacidad de determinar si un conmutador, o ‘puerta’, está abierto o cerrado. Es decir, el ordenador puede reconocer sólo dos estados en cualquiera de sus circuitos microscópicos: abierto o cerrado, alta o baja tensión o, en el caso de números, 0 o 1. Sin embargo, es la velocidad con la cual el ordenador realiza este acto tan sencillo lo que lo convierte en una maravilla de la tecnología moderna. Las velocidades del ordenador se miden en megahercios (millones de ciclos por segundo), aunque en la actualidad se alcanzan velocidades del orden de los gigahercios (miles de millones de ciclo por segundo). Un ordenador con una velocidad de reloj de 1 gigahercio (GHz), velocidad bastante representativa de un microordenador o microcomputadora, es capaz de ejecutar 1.000 millones de operaciones discretas por segundo, mientras que las supercomputadoras utilizadas en aplicaciones de investigación y de defensa alcanzan velocidades de billones de ciclos por segundo.

La velocidad y la potencia de cálculo de los ordenadores digitales se incrementan aún más por la cantidad de datos manipulados durante cada ciclo. Si un ordenador verifica sólo un conmutador cada vez, dicho conmutador puede representar solamente dos comandos o números. Así, ON simbolizaría una operación o un número, mientras que OFF simbolizará otra u otro. Sin embargo, al verificar grupos de conmutadores enlazados como una sola unidad, el ordenador aumenta el número de operaciones que puede reconocer en cada ciclo. Por ejemplo, un ordenador que verifica dos conmutadores cada vez, puede representar cuatro números (del 0 al 3), o bien ejecutar en cada ciclo una de las cuatro operaciones, una para cada uno de los siguientes modelos de conmutador: OFF-OFF (0), OFF-ON (1), ON-OFF (2) u ON-ON (3). En general, los ordenadores de la década de 1970 eran capaces de verificar 8 conmutadores simultáneamente; es decir, podían verificar ocho dígitos binarios, de ahí el término bit de datos en cada ciclo. Un grupo de ocho bits se denomina byte y cada uno contiene 256 configuraciones posibles de ON y OFF (o 1 y 0). Cada configuración equivale a una instrucción, a una parte de una instrucción o a un determinado tipo de dato; estos últimos pueden ser un número, un carácter o un símbolo gráfico. Por ejemplo, la configuración 11010010 puede representar datos binarios, en este caso el número decimal 210 (véase Sistemas numéricos), o bien estar indicando al ordenador que compare los datos almacenados en estos conmutadores con los datos almacenados en determinada ubicación del chip de memoria. El desarrollo de procesadores capaces de manejar simultáneamente 16, 32 y 64 bits de datos permitió incrementar la velocidad de los ordenadores. La colección completa de configuraciones reconocibles, es decir, la lista total de operaciones que una computadora es capaz de procesar, se denomina conjunto, o repertorio, de instrucciones. Ambos factores, el número de bits simultáneos y el tamaño de los conjuntos de instrucciones, continúa incrementándose a medida que avanza el desarrollo de los ordenadores digitales modernos.

HISTORIA

La primera máquina de calcular mecánica, un precursor del ordenador digital, fue inventada en 1642 por el matemático francés Blaise Pascal. Aquel dispositivo utilizaba una serie de ruedas de diez dientes en las que cada uno de los dientes representaba un dígito del 0 al 9. Las ruedas estaban conectadas de tal manera que podían sumarse números haciéndolas avanzar el número de dientes correcto. En 1670 el filósofo y matemático alemán Gottfried Wilhelm Leibniz perfeccionó esta máquina e inventó una que también podía multiplicar.

El inventor francés Joseph Marie Jacquard, al diseñar un telar automático, utilizó delgadas placas de madera perforadas para controlar el tejido utilizado en los diseños complejos. Durante la década de 1880 el estadístico estadounidense Herman Hollerith concibió la idea de utilizar tarjetas perforadas, similares a las placas de Jacquard, para procesar datos. Hollerith consiguió compilar la información estadística destinada al censo de población de 1890 de Estados Unidos mediante la utilización de un sistema que hacía pasar tarjetas perforadas sobre contactos eléctricos.

La máquina analítica

También en el siglo XIX el matemático e inventor británico Charles Babbage elaboró los principios de la computadora digital moderna. Inventó una serie de máquinas, como la máquina diferencial, diseñadas para solucionar problemas matemáticos complejos. Muchos historiadores consideran a Babbage y a su socia, la matemática británica Augusta Ada Byron (1815-1852), hija del poeta inglés lord Byron, como a los verdaderos inventores de la computadora digital moderna. La tecnología de aquella época no era capaz de trasladar a la práctica sus acertados conceptos; pero una de sus invenciones, la máquina analítica, ya tenía muchas de las características de un ordenador moderno. Incluía una corriente, o flujo de entrada en forma de paquete de tarjetas perforadas, una memoria para guardar los datos, un procesador para las operaciones matemáticas y una impresora para hacer permanente el registro.

Primeros ordenadores

Los ordenadores analógicos comenzaron a construirse a principios del siglo XX. Los primeros modelos realizaban los cálculos mediante ejes y engranajes giratorios. Con estas máquinas se evaluaban las aproximaciones numéricas de ecuaciones demasiado difíciles como para poder ser resueltas mediante otros métodos. Durante las dos guerras mundiales se utilizaron sistemas informáticos analógicos, primero mecánicos y más tarde eléctricos, para predecir la trayectoria de los torpedos en los submarinos y para el manejo a distancia de las bombas en la aviación.

Ordenadores electrónicos

Durante la II Guerra Mundial (1939-1945), un equipo de científicos y matemáticos que trabajaban en Bletchley Park, al norte de Londres, crearon lo que se consideró el primer ordenador digital totalmente electrónico: el Colossus. Hacia diciembre de 1943 el Colossus, que incorporaba 1.500 válvulas o tubos de vacío, era ya operativo. Fue utilizado por el equipo dirigido por Alan Turing para descodificar los mensajes de radio cifrados de los alemanes. En 1939 y con independencia de este proyecto, John Atanasoff y Clifford Berry ya habían construido un prototipo de máquina electrónica en el Iowa State College (EEUU). Este prototipo y las investigaciones posteriores se realizaron en el anonimato, y más tarde quedaron eclipsadas por el desarrollo del Calculador e integrador numérico electrónico (en inglés ENIAC, Electronic Numerical Integrator and Computer) en 1946. El ENIAC, que según se demostró se basaba en gran medida en el ordenador Atanasoff-Berry (en inglés ABC, Atanasoff-Berry Computer), obtuvo una patente que caducó en 1973, varias décadas más tarde.

El ENIAC contenía 18.000 válvulas de vacío y tenía una velocidad de varios cientos de multiplicaciones por minuto, pero su programa estaba conectado al procesador y debía ser modificado manualmente. Se construyó un sucesor del ENIAC con un almacenamiento de programa que estaba basado en los conceptos del matemático húngaro-estadounidense John von Neumann. Las instrucciones se almacenaban dentro de una llamada memoria, lo que liberaba al ordenador de las limitaciones de velocidad del lector de cinta de papel durante la ejecución y permitía resolver problemas sin necesidad de volver a conectarse al ordenador.

A finales de la década de 1950 el uso del transistor en los ordenadores marcó el advenimiento de elementos lógicos más pequeños, rápidos y versátiles de lo que permitían las máquinas con válvulas. Como los transistores utilizan mucha menos energía y tienen una vida útil más prolongada, a su desarrollo se debió el nacimiento de máquinas más perfeccionadas, que fueron llamadas ordenadores o computadoras de segunda generación. Los componentes se hicieron más pequeños, así como los espacios entre ellos, por lo que la fabricación del sistema resultaba más barata.

Circuitos integrados

A finales de la década de 1960 apareció el circuito integrado (CI), que posibilitó la fabricación de varios transistores en un único sustrato de silicio en el que los cables de interconexión iban soldados. El circuito integrado permitió una posterior reducción del precio, el tamaño y los porcentajes de error. El microprocesador se convirtió en una realidad a mediados de la década de 1970, con la introducción del circuito de integración a gran escala (LSI, acrónimo de Large Scale Integrated) y, más tarde, con el circuito de integración a mayor escala (VLSI, acrónimo de Very Large Scale Integrated), con varios miles de transistores interconectados soldados sobre un único sustrato de silicio.

HARDWARE

Todos los ordenadores digitales modernos son similares conceptualmente con independencia de su tamaño. Sin embargo, pueden dividirse en varias categorías según su precio y rendimiento: el ordenador o computadora personal es una máquina de coste relativamente bajo y por lo general de tamaño adecuado para un escritorio (algunos de ellos, denominados portátiles, o laptops, son lo bastante pequeños como para caber en un maletín); la estación de trabajo, un microordenador con gráficos mejorados y capacidades de comunicaciones que lo hacen especialmente útil para el trabajo de oficina; el miniordenador o minicomputadora, un ordenador de mayor tamaño que por lo general es demasiado caro para el uso personal y que es apto para compañías, universidades o laboratorios; y el mainframe, una gran máquina de alto precio capaz de servir a las necesidades de grandes empresas, departamentos gubernamentales, instituciones de investigación científica y similares (las máquinas más grandes y más rápidas dentro de esta categoría se denominan superordenadores).

En realidad, un ordenador digital no es una única máquina, en el sentido en el que la mayoría de la gente considera a los ordenadores. Es un sistema compuesto de cinco elementos diferenciados: una CPU (unidad central de proceso); dispositivos de entrada; dispositivos de almacenamiento de memoria; dispositivos de salida y una red de comunicaciones, denominada bus, que enlaza todos los elementos del sistema y conecta a éste con el mundo exterior.

CPU (unidad central de proceso)

La CPU puede ser un único chip o una serie de chips que realizan cálculos aritméticos y lógicos y que temporizan y controlan las operaciones de los demás elementos del sistema. Las técnicas de miniaturización y de integración han posibilitado el desarrollo de un chip de CPU denominado microprocesador, que incorpora un sistema de circuitos y memoria adicionales. El resultado son unos ordenadores más pequeños y la reducción del sistema de circuitos de soporte. Los microprocesadores se utilizan en la mayoría de los ordenadores personales de la actualidad.

La mayoría de los chips de CPU y de los microprocesadores están compuestos de cuatro secciones funcionales: una unidad aritmética/lógica; unos registros; una sección de control y un bus interno. La unidad aritmética/lógica proporciona al chip su capacidad de cálculo y permite la realización de operaciones aritméticas y lógicas. Los registros son áreas de almacenamiento temporal que contienen datos, realizan un seguimiento de las instrucciones y conservan la ubicación y los resultados de dichas operaciones. La sección de control tiene tres tareas principales: temporiza y regula las operaciones de la totalidad del sistema informático; su descodificador de instrucciones lee las configuraciones de datos en un registro designado y las convierte en una actividad, como podría ser sumar o comparar, y su unidad interruptora indica en qué orden utilizará la CPU las operaciones individuales y regula la cantidad de tiempo de CPU que podrá consumir cada operación.

El último segmento de un chip de CPU o microprocesador es su bus interno, una red de líneas de comunicación que conecta los elementos internos del procesador y que también lleva hacia los conectores externos que enlazan al procesador con los demás elementos del sistema informático. Los tres tipos de bus de la CPU son: el bus de control que consiste en una línea que detecta las señales de entrada y de otra línea que genera señales de control desde el interior de la CPU; el bus de dirección, una línea unidireccional que sale desde el procesador y que gestiona la ubicación de los datos en las direcciones de la memoria; y el bus de datos, una línea de transmisión bidireccional que lee los datos de la memoria y escribe nuevos datos en ésta.

Dispositivos de entrada

Estos dispositivos permiten al usuario del ordenador introducir datos, comandos y programas en la CPU. El dispositivo de entrada más común es un teclado similar al de las máquinas de escribir. La información introducida con el mismo, es transformada por el ordenador en modelos reconocibles. Otros dispositivos de entrada son los lápices ópticos, que transmiten información gráfica desde tabletas electrónicas hasta el ordenador; joysticks y el ratón o mouse, que convierte el movimiento físico en movimiento dentro de una pantalla de ordenador; los escáneres luminosos, que leen palabras o símbolos de una página impresa y los traducen a configuraciones electrónicas que el ordenador puede manipular y almacenar; y los módulos de reconocimiento de voz, que convierten la palabra hablada en señales digitales comprensibles para el ordenador. También es posible utilizar los dispositivos de almacenamiento para introducir datos en la unidad de proceso.

Dispositivos de almacenamiento

Los sistemas informáticos pueden almacenar los datos tanto interna (en la memoria) como externamente (en los dispositivos de almacenamiento). Internamente, las instrucciones o datos pueden almacenarse por un tiempo en los chips de silicio de la RAM (memoria de acceso aleatorio) montados directamente en la placa de circuitos principal de la computadora, o bien en chips montados en tarjetas periféricas conectadas a la placa de circuitos principal del ordenador. Estos chips de RAM constan de conmutadores sensibles a los cambios de la corriente eléctrica. Los chips de RAM estática conservan sus bits de datos mientras la corriente siga fluyendo a través del circuito, mientras que los chips de RAM dinámica (DRAM, acrónimo de Dynamic Random Access Memory) necesitan la aplicación de tensiones altas o bajas a intervalos regulares aproximadamente cada dos milisegundos para no perder su información.

Otro tipo de memoria interna son los chips de silicio en los que ya están instalados todos los conmutadores. Las configuraciones en este tipo de chips de ROM (memoria de sólo lectura) forman los comandos, los datos o los programas que el ordenador necesita para funcionar correctamente. Los chips de RAM son como pedazos de papel en los que se puede escribir, borrar y volver a utilizar; los chips de ROM son como un libro, con las palabras ya escritas en cada página. Tanto los primeros como los segundos están enlazados a la CPU a través de circuitos.

Los dispositivos de almacenamiento externos, que pueden residir físicamente dentro de la unidad de proceso principal del ordenador, están fuera de la placa de circuitos principal. Estos dispositivos almacenan los datos en forma de cargas sobre un medio magnéticamente sensible, por ejemplo una cinta de sonido o, lo que es más común, sobre un disco revestido de una fina capa de partículas metálicas. Los dispositivos de almacenamiento externo más frecuentes son los disquetes y los discos duros, aunque la mayoría de los grandes sistemas informáticos utiliza bancos de unidades de almacenamiento en cinta magnética. Los discos flexibles pueden contener, según sea el sistema, desde varios centenares de miles de bytes hasta bastante más de un millón de bytes de datos. Los discos duros no pueden extraerse de los receptáculos de la unidad de disco, que contienen los dispositivos electrónicos para leer y escribir datos sobre la superficie magnética de los discos y pueden almacenar miles de millones de bytes. La tecnología de CD-ROM, que emplea las mismas técnicas láser utilizadas para crear los discos compactos (CD) de audio, permiten capacidades de almacenamiento del orden de varios cientos de megabytes (millones de bytes) de datos.

Dispositivos de salida

Estos dispositivos permiten al usuario ver los resultados de los cálculos o de las manipulaciones de datos de la computadora. El dispositivo de salida más común es la unidad de visualización (VDU, acrónimo de Video Display Unit), que consiste en un monitor que presenta los caracteres y gráficos en una pantalla similar a la del televisor. Por lo general, las VDU tienen un tubo de rayos catódicos como el de cualquier televisor, aunque los ordenadores pequeños y portátiles utilizan hoy pantallas de cristal líquido (LCD, acrónimo de Liquid Crystal Displays) o electroluminiscentes. Otros dispositivos de salida más comunes son la impresora y el módem. Un módem enlaza dos ordenadores transformando las señales digitales en analógicas para que los datos puedan transmitirse a través de las telecomunicaciones.

Sistemas operativos

Los sistemas operativos internos fueron desarrollados sobre todo para coordinar y trasladar estos flujos de datos que procedían de fuentes distintas, como las unidades de disco o los coprocesadores (chips de procesamiento que ejecutan operaciones simultáneamente con la unidad central, aunque son diferentes). Un sistema operativo es un programa de control principal, almacenado de forma permanente en la memoria, que interpreta los comandos del usuario que solicita diversos tipos de servicios, como visualización, impresión o copia de un archivo de datos; presenta una lista de todos los archivos existentes en un directorio o ejecuta un determinado programa.

PROGRAMACIÓN

Un programa es una secuencia de instrucciones que indican al hardware de un ordenador qué operaciones debe realizar con los datos. Los programas pueden estar incorporados al propio hardware, o bien pueden existir de manera independiente en forma de software. En algunas computadoras especializadas las instrucciones operativas están incorporadas en el sistema de circuitos; entre los ejemplos más comunes pueden citarse los microordenadores de las calculadoras, relojes de pulsera, motores de coches y hornos microondas. Por otro lado, un ordenador universal, o de uso general, contiene algunos programas incorporados (en la ROM) o instrucciones (en el chip del procesador), pero depende de programas externos para ejecutar tareas útiles. Una vez programado, podrá hacer tanto o tan poco como le permita el software que lo controla en determinado momento. El software de uso más generalizado incluye una amplia variedad de programas de aplicaciones, es decir, instrucciones al ordenador acerca de cómo realizar diversas tareas.

Lenguajes

Las instrucciones deben darse en un lenguaje de programación, es decir, en una determinada configuración de información digital binaria. En las primeras computadoras, la programación era una tarea difícil y laboriosa ya que los conmutadores ON-OFF de las válvulas de vacío debían configurarse a mano. Programar tareas tan sencillas como ordenar una lista de nombres requería varios días de trabajo de equipos de programadores. Desde entonces se han inventado varios lenguajes informáticos, algunos orientados hacia funciones específicas y otros centrados en la facilidad de uso.

Lenguaje máquina

El lenguaje propio del ordenador, basado en el sistema binario, o código máquina, resulta difícil de utilizar para las personas. El programador debe introducir todos y cada uno de los comandos y datos en forma binaria, y una operación sencilla como comparar el contenido de un registro con los datos situados en una ubicación del chip de memoria puede tener el siguiente formato: 11001010 00010111 11110101 00101011. La programación en lenguaje máquina es una tarea tan tediosa y consume tanto tiempo que muy raras veces lo que se ahorra en la ejecución del programa justifica los días o semanas que se han necesitado para escribir el mismo.

Lenguaje ensamblador

Uno de los métodos inventados por los programadores para reducir y simplificar el proceso es la denominada programación con lenguaje ensamblador. Al asignar un código mnemotécnico (por lo general de tres letras) a cada comando en lenguaje máquina, es posible escribir y depurar o eliminar los errores lógicos y de datos en los programas escritos en lenguaje ensamblador, empleando para ello sólo una fracción del tiempo necesario para programar en lenguaje máquina. En el lenguaje ensamblador, cada comando mnemotécnico y sus operadores simbólicos equivalen a una instrucción de máquina. Un programa ensamblador traduce el código fuente, una lista de códigos de operación mnemotécnicos y de operadores simbólicos, a código objeto (es decir, a lenguaje máquina) y, a continuación, ejecuta el programa.

Sin embargo, el lenguaje ensamblador puede utilizarse con un solo tipo de chip de CPU o microprocesador. Los programadores, que dedicaron tanto tiempo y esfuerzo al aprendizaje de la programación de un ordenador, se veían obligados a aprender un nuevo estilo de programación cada vez que trabajaban con otra máquina. Lo que se necesitaba era un método abreviado en el que un enunciado simbólico pudiera representar una secuencia de numerosas instrucciones en lenguaje máquina, y un método que permitiera que el mismo programa pudiera ejecutarse en varios tipos de máquinas. Estas necesidades llevaron al desarrollo de lenguajes de alto nivel.

Lenguajes de alto nivel

Los lenguajes de alto nivel suelen utilizar términos ingleses del tipo LIST, PRINT u OPEN como comandos que representan una secuencia de decenas o de centenas de instrucciones en lenguaje máquina. Los comandos se introducen desde el teclado, desde un programa residente en la memoria o desde un dispositivo de almacenamiento, y son interceptados por un programa que los traduce a instrucciones en lenguaje máquina.

Los programas traductores son de dos tipos: intérpretes y compiladores. Con un intérprete, los programas que repiten un ciclo para volver a ejecutar parte de sus instrucciones, reinterpretan la misma instrucción cada vez que aparece. Por consiguiente, los programas interpretados se ejecutan con mucha mayor lentitud que los programas en lenguaje máquina. Por el contrario, los compiladores traducen un programa íntegro a lenguaje máquina antes de su ejecución, por lo cual se ejecutan con tanta rapidez como si hubiesen sido escritos directamente en lenguaje máquina.

Se considera que fue la estadounidense Grace Hopper quien implementó el primer lenguaje de ordenador orientado al uso comercial. Después de programar un ordenador experimental en la Universidad de Harvard, trabajó en los modelos UNIVAC I y UNIVAC II, desarrollando un lenguaje de alto nivel para uso comercial llamado FLOW-MATIC. Para facilitar el uso del ordenador en las aplicaciones científicas, IBM desarrolló un lenguaje que simplificaría el trabajo que implicaba el tratamiento de fórmulas matemáticas complejas. Iniciado en 1954 y terminado en 1957, el FORTRAN (acrónimo de Formula Translator) fue el primer lenguaje exhaustivo de alto nivel de uso generalizado.

En 1957 una asociación estadounidense, la Association for Computing Machinery comenzó a desarrollar un lenguaje universal que corrigiera algunos de los defectos del FORTRAN. Un año más tarde fue lanzado el ALGOL (acrónimo de Algorithmic Language), otro lenguaje de orientación científica. De gran difusión en Europa durante las décadas de 1960 y 1970, desde entonces ha sido sustituido por nuevos lenguajes, mientras que el FORTRAN continúa siendo utilizado debido a las gigantescas inversiones que se hicieron en los programas existentes. El COBOL (acrónimo de Common Business Oriented Language) es un lenguaje de programación para uso comercial y empresarial especializado en la organización de datos y manipulación de archivos, y hoy día está muy difundido en el mundo empresarial.

El lenguaje BASIC (acrónimo de Código de Instrucciones Simbólicas de Uso General para Principiantes) fue desarrollado en el Dartmouth College a principios de la década de 1960 y está dirigido a los usuarios de ordenador no profesionales. Este lenguaje se universalizó gracias a la popularización de los microordenadores en las décadas de 1970 y 1980. Calificado de lento, ineficaz y poco estético por sus detractores, BASIC es sencillo de aprender y fácil de utilizar. Como muchos de los primeros microordenadores se vendieron con BASIC incorporado en el hardware (en la memoria ROM), se generalizó el uso de este lenguaje.

Aunque existen centenares de lenguajes informáticos y de variantes, hay algunos dignos de mención, como el PASCAL, diseñado en un principio como herramienta de enseñanza, hoy es uno de los lenguajes de microordenador más populares; el Logo fue desarrollado para que los niños pudieran acceder al mundo de la informática; el C, un lenguaje de Bell Laboratories diseñado en la década de 1970, se utiliza ampliamente en el desarrollo de programas de sistemas, al igual que su sucesor, el C++. El LISP y el PROLOG han alcanzado amplia difusión en el campo de la inteligencia artificial.

EVOLUCIÓN FUTURA

Una tendencia constante en el desarrollo de los ordenadores es la microminiaturización, iniciativa que tiende a comprimir más elementos de circuitos en un espacio de chip cada vez más pequeño. Además, los investigadores intentan agilizar el funcionamiento de los circuitos mediante el uso de la superconductividad, un fenómeno de disminución de la resistencia eléctrica que se observa cuando se enfrían los objetos a temperaturas muy bajas.

Las redes informáticas se han vuelto cada vez más importantes en el desarrollo de la tecnología de computadoras. Las redes son grupos de computadoras interconectados mediante sistemas de comunicación. La red pública Internet es un ejemplo de red informática planetaria. Las redes permiten que las computadoras conectadas intercambien rápidamente información y, en algunos casos, compartan una carga de trabajo, con lo que muchas computadoras pueden cooperar en la realización de una tarea. Se están desarrollando nuevas tecnologías de equipo físico y soporte lógico que acelerarán los dos procesos mencionados.

Otra tendencia en el desarrollo de computadoras es el esfuerzo para crear computadoras de quinta generación, capaces de resolver problemas complejos en formas que pudieran llegar a considerarse creativas. Una vía que se está explorando activamente es el ordenador de proceso paralelo, que emplea muchos chips para realizar varias tareas diferentes al mismo tiempo. El proceso paralelo podría llegar a reproducir hasta cierto punto las complejas funciones de realimentación, aproximación y evaluación que caracterizan al pensamiento humano. Otra forma de proceso paralelo que se está investigando es el uso de computadoras moleculares. En estas computadoras, los símbolos lógicos se expresan por unidades químicas de ADN en vez de por el flujo de electrones habitual en las computadoras corrientes. Las computadoras moleculares podrían llegar a resolver problemas complicados mucho más rápidamente que las actuales supercomputadoras y consumir mucha menos energía.

Entradas populares

Me gusta

Seguidores