Geodesia




Geodesia
Geodesia, ciencia matemática que tiene por objeto determinar la forma y dimensiones de la Tierra, muy útil cuando se aplica con fines de control, es decir, para establecer la ordenación de tierras, los límites de suelo edificable o verificar las dimensiones de las obras construidas. La topografía de los terrenos, los elementos naturales y artificiales como embalses, puentes y carreteras, se representan en los mapas gracias a los levantamientos geodésicos. Las mediciones en un estudio topográfico son lineales y angulares, y se basan en principios de geometría y trigonometría tanto plana como esférica. En la actualidad, se utilizan satélites artificiales para determinar la distribución irregular de masas en el interior de la Tierra, así como su forma y dimensiones a partir de las irregularidades en sus órbitas.
2
INSTRUMENTOS DE MEDIDA
Teodolito
Un ingeniero de la construcción utiliza un teodolito, un instrumento para medir ángulos en los planos horizontal y vertical muy usado en topografía.

Las longitudes horizontales se miden con reglas o cintas calibradas y, a veces, con sistemas electrónicos que registran el tiempo que tardan en desplazarse, entre dos puntos, las ondas de luz o radio. Las mediciones de longitudes verticales se realizan con una mira vertical graduada para determinar las diferencias de nivel y de altitud. El nivel de ingeniero consiste en un telescopio montado sobre un trípode plegable, equipado con un nivel de burbuja y una retícula que se utiliza para ver las graduaciones en la mira. Los ángulos horizontales y verticales se miden con un teodolito, telescopio montado sobre un trípode plegable con un limbo vertical y otro horizontal, cuyos círculos graduados indican los ángulos en grados, minutos y segundos.

Levantamiento de una carretera
El ingeniero de la izquierda mira a través del ocular del teodolito hacia la ‘mira’ que sostiene un segundo ingeniero en la carretera. Las medidas topográficas que se realizan son las distancias horizontales y los ángulos vertical y horizontal. El tercer miembro del equipo toma nota de los datos.

Los distanciómetros, o aparatos electrónicos de medida de distancias, pueden dar resultados muy exactos, con una resolución entre 1 y 6 partes por millón (error relativo). Así, por ejemplo, un error de 5 partes por millón (ppm) representa 5mm/km. También se están desarrollando aparatos electrónicos de gran precisión para la medida de ángulos. Los teodolitos utilizan lentes que permiten un mayor aumento y pueden ser, además, más pequeños que los anteriores. Estos instrumentos son cada vez más exactos, siendo capaces de medir centésimas de segundo de arco. Para nivelaciones diferenciales se usa también un nivel de ingeniero automático, que utiliza un prisma pendular o una luz reflectante.
3
MEDIDAS EN EL PLANO
Los estudios topográficos planos consideran cualquier pequeño segmento del terreno o del agua como un plano horizontal. Tales mediciones suelen proyectarse y calcularse en un sistema de coordenadas rectangular horizontal, con una orientación norte-sur y este-oeste, aunque la cuadrícula puede estar orientada en una dirección arbitraria que resulte más conveniente que la geográfica real. A partir de una estación o punto de origen de coordenadas asignadas, se mide la distancia horizontal hasta otro punto y después hasta otro haciendo un itinerario, para finalmente acercarse de nuevo al punto original o a cualquier otro punto de coordenadas conocidas. Una sucesión de estas líneas o recorridos conforma una línea quebrada o poligonal. Los ángulos horizontales entre estaciones sucesivas se miden con un teodolito en cada estación o vértice. Por tanto, a partir de una dirección inicial conocida o asignada arbitrariamente, pueden calcularse las direcciones sucesivas. Para determinar las coordenadas de las estaciones en la poligonal se utilizan cálculos de geometría y trigonometría plana. La distancia al norte o al sur de una línea poligonal es su longitud multiplicada por el coseno del ángulo de dirección; la distancia al este o al oeste del itinerario de una línea poligonal es su longitud multiplicada por el seno del ángulo de dirección. Las coordenadas permiten trazar los ejes a cualquier escala en una cuadrícula, y esto puede servir para el posterior trazado o control de otros detalles dibujados en un mapa o carta geográfica.
En lugar de una poligonal puede utilizarse una triangulación, midiendo sólo una línea de base, pero calculando después todos los ángulos en una cadena de triángulos y las coordenadas de los vértices sucesivos. En la actualidad, el avance de la distanciometría electrónica permite observar todos los ángulos y todos los lados (triangulación y trilateración). La elección de la poligonal o de la triangulación dependerá del tipo de terreno en el que estemos trabajando.
4
LEVANTAMIENTO GEODÉSICO
Para áreas extensas, las mediciones topográficas tienen en cuenta la forma básica de la Tierra, el geoide (casi esférica), por lo que se las denomina levantamientos geodésicos. Se basan en un meridiano norte-sur verdadero definido por el eje de rotación de la Tierra y se apoyan en la geometría esférica. En Estados Unidos, por ejemplo, existen sistemas de coordenadas planas en casi todos los estados, con conversiones de coordenadas planas a coordenadas geodésicas realizadas mediante relaciones tabuladas. Un ejemplo típico de esta clase de alzado es el trazado de un camino o carretera de muchos kilómetros de recorrido, con lo cual necesita un ajuste geodésico para evitar la acumulación de errores provocados por la convergencia de los meridianos.
5
LEVANTAMIENTOS CATASTRALES
Los levantamientos catastrales del terreno se realizan para establecer los límites de su extensión, colocando indicadores y postes en los vértices para determinar las coordenadas de dichos puntos y obtener, así, la información necesaria del área y sus límites. Estas medidas tienen que constar en los datos de escritura de un terreno, y también son necesarias para trazar y reflejar en un gráfico las áreas de la propiedad. Los levantamientos topográficos de propiedades se realizan con un elevado grado de precisión, colocando en las esquinas hitos permanentes visibles y recuperables. Estos indicadores son convenientes para el registro público de la propiedad y para asegurar el título de propiedad correcto para el propietario legítimo del terreno. Además de las técnicas de levantamiento topográfico, los topógrafos o agrimensores deben conocer la legislación sobre la propiedad; la ley exige, generalmente, que estos profesionales estén registrados.
6
LEVANTAMIENTO TOPOGRÁFICO
Los levantamientos topográficos son tridimensionales y utilizan técnicas de levantamiento geodésico plano y otras especiales para establecer un control tanto vertical como horizontal. La configuración del terreno y de los elementos artificiales o naturales que hay en él se localizan a través de medidas que se representan en una hoja plana para configurar un mapa topográfico. Las curvas de nivel, que unen puntos de igual altitud, se utilizan para representar las altitudes en cualquiera de los diferentes intervalos medidos en metros.
Muchos mapas topográficos se realizan gracias a la fotogrametría aérea; utilizan pares estereoscópicos de fotografías tomadas en levantamientos y, más recientemente, desde satélites artificiales como los spot. En las fotografías deben aparecer las medidas horizontales y verticales del terreno. Estas fotografías se restituyen en modelos tridimensionales para preparar la realización de un mapa a escala. Se requieren cámaras adecuadas y equipos de trazado de mapas muy precisos para representar la verdadera posición de los elementos naturales y humanos, y para mostrar las alturas exactas de todos los puntos del área que abarcará el mapa. En un plano topográfico la altitud se representa mediante curvas de nivel, que proporcionan una representación del terreno fácil de interpretar.
7
LEVANTAMIENTO DE PLANOS PARA LA CONSTRUCCIÓN E INGENIERÍA
Las mediciones de ingeniería establecen puntos de control mediante poligonales, líneas de base u otros métodos con el fin de obtener la información necesaria para los diseños de obras de ingeniería (levantamientos) y para posicionar los elementos constructivos, basándose en los planos del proyecto que utilizan esos puntos de control (replanteos). Los levantamientos topográficos y los mapas a los que dan lugar proporcionan información sobre la localización horizontal y sobre las altitudes, necesarios para diseñar estructuras como edificios, embalses, canales, carreteras, puentes, tendidos eléctricos o colectores. Para levantar los planos de estas obras se parte de los mismos puntos de control utilizados en los levantamientos topográficos originales.
Los levantamientos geodésicos de construcciones implican la orientación y supervisión de mediciones de ingeniería que se coordinan en el levantamiento de planos y en la construcción de cualquier estructura.
8
LEVANTAMIENTOS CARTOGRÁFICOS Y CARTOGRAFÍA
Se denominan levantamientos geodésicos cartográficos a aquéllos que localizan puntos de control y obtienen detalles para la confección de mapas o cartas. Las cartas y los mapas a pequeña escala (que representan áreas extensas) son combinaciones de mapas a escala más grande de los cuales se eliminan y simplifican muchos detalles; a este proceso se le llama generalización cartográfica. Los mapas litorales representan la costa, pero de ésta muestran sólo los elementos que pueden ser importantes para la navegación y que están situados a lo largo de la línea de costa e informan de las profundidades del agua (líneas batimétricas). Las cartas aeronáuticas sólo muestran los rasgos geográficos más relevantes, como pueden ser las barreras, rutas aéreas, radiofaros y otros elementos de orientación como las vías de ferrocarril o carreteras.
9
LEVANTAMIENTO GEODÉSICO MARÍTIMO
Los levantamientos y confección de mapas marítimos, de los ríos, puertos o lagos, con el fin de establecer las profundidades para facilitar una navegación más segura, se realizan mediante sondeos manuales en observaciones llevadas a cabo desde los puntos de control de la costa. Los sondeos con sonar, efectuados de forma simultánea a la localización por radar del buque oceanográfico de sondeo, permiten también el trazado rápido y exacto de los mapas. Más lejos de la costa la localización será siempre menos precisa; los aparatos Loran y los satélites de navegación se utilizan para conseguir la localización más exacta posible de las embarcaciones en alta mar cuando éstas cuentan con equipamientos modernos.
10
LEVANTAMIENTO DE PLANOS DE MINAS
Los levantamientos de minas se utilizan para establecer la ubicación superficial y los límites de una concesión minera. Durante las operaciones en las minas, el levantamiento ayuda a establecer la ubicación exacta de los trabajos bajo tierra en vertical y en horizontal, a plantear las conexiones entre los túneles y a guiar la ejecución de estos últimos. Es un trazado tridimensional que, en esencia, apenas difiere del levantamiento topográfico superficial.

Minería




Minería
Mina subterránea
Las minas subterráneas se abren en zonas con yacimientos minerales prometedores. El pozo es la perforación vertical principal y se emplea para el acceso de las personas a la mina y para sacar el mineral. Un sistema de ventilación situado cerca del pozo principal lleva aire fresco a los mineros y evita la acumulación de gases peligrosos. Un sistema de galerías transversales conecta el yacimiento de mineral con el pozo principal a varios niveles, que a su vez están conectados por aberturas llamadas alzamientos. Las gradas son las cámaras donde se extrae el mineral.

Minería, obtención selectiva de minerales y otros materiales (salvo materiales orgánicos de formación reciente) a partir de la corteza terrestre. La minería es una de las actividades más antiguas de la humanidad. Casi desde el principio de la edad de piedra, hace 2,5 millones de años o más, ha venido siendo la principal fuente de materiales para la fabricación de herramientas. Se puede decir que la minería surgió cuando los predecesores de los seres humanos empezaron a recuperar determinados tipos de rocas para tallarlas y fabricar herramientas. Al principio, la minería implicaba simplemente la actividad, muy rudimentaria, de desenterrar el sílex u otras rocas. A medida que se vaciaban los yacimientos de la superficie, las excavaciones se hacían más profundas, hasta que empezó la minería subterránea. La mina subterránea más antigua que se ha identificado es una mina de ocre rojo en la sierra Bomvu de Suazilandia, en África meridional, excavada 40.000 años antes de nuestra era (mucho antes de la aparición de la agricultura). La minería de superficie, por supuesto, se remonta a épocas mucho más antiguas.
Todos los materiales empleados por la sociedad moderna han sido obtenidos mediante minería, o necesitan productos mineros para su fabricación. Puede decirse que, si un material no procede de una planta, entonces es que se obtiene de la tierra. Incluso las otras actividades del sector primario —agricultura, pesca y silvicultura— no podrían llevarse a cabo sin herramientas y máquinas fabricadas con los productos de las minas. Cabe argumentar por ello que la minería es la industria más elemental de la civilización humana.
Los métodos de minería se dividen en cuatro tipos básicos. En primer lugar, los materiales se pueden obtener en minas de superficie, explotaciones a cielo abierto u otras excavaciones abiertas. Este grupo incluye la inmensa mayoría de las minas de todo el mundo. En segundo lugar, están las minas subterráneas, a las que se accede a través de galerías o túneles. El tercer método es la recuperación de minerales y combustibles a través de pozos de perforación. Por último, está la minería submarina o dragado, que próximamente podría extenderse a la minería profunda de los oceános.
La minería siempre implica la extracción física de materiales de la corteza terrestre, con frecuencia en grandes cantidades para recuperar sólo pequeños volúmenes del producto deseado. Por eso resulta imposible que la minería no afecte al medio ambiente, al menos en la zona de la mina. De hecho, algunos consideran que la minería es una de las causas más importantes de la degradación medioambiental provocada por los seres humanos. Sin embargo, en la actualidad, un ingeniero de minas cualificado es capaz de limitar al máximo los daños y recuperar la zona una vez completada la explotación minera.
Por lo general, la minería tiene como fin obtener minerales o combustibles. Un mineral puede definirse como una sustancia de origen natural con una composición química definida y unas propiedades predecibles y constantes. Los combustibles más importantes son los hidrocarburos sólidos, que, por lo general, no se definen como minerales. Un recurso mineral es un volumen de la corteza terrestre con una concentración anormalmente elevada de un mineral o combustible determinado. Se convierte en una reserva si dicho mineral, o su contenido (un metal, por ejemplo), se puede recuperar mediante la tecnología del momento con un coste que permita una rentabilidad razonable de la inversión en la mina. Generalmente, se dice que una mina es explotable cuando la inversión para la explotación es inferior al beneficio obtenido por la comercialización del mineral.
Hay gran variedad de materiales que se pueden obtener de dichos yacimientos. Pueden clasificarse como sigue:

Maquinaria de minería
Una excavadora gigante se prepara para cargar mineral en una mina de hierro. La máquina se mueve sobre orugas por el suelo de la mina, y puede elevar cargas enormes con su pala.

Metales: incluyen los metales preciosos (el oro, la plata y los metales del grupo del platino), los metales siderúrgicos (hierro, níquel, cobalto, titanio, vanadio y cromo), los metales básicos (cobre, plomo, estaño y cinc), los metales ligeros (magnesio y aluminio), los metales nucleares (uranio, radio y torio) y los metales especiales, como el litio, el germanio, el galio o el arsénico.
Minerales industriales: incluyen los de potasio y azufre, el cuarzo, la trona, la sal común, el amianto, el talco, el feldespato y los fosfatos.
Materiales de construcción: incluyen la arena, la grava, los áridos, las arcillas para ladrillos, la caliza y los esquistos para la fabricación de cemento. En este grupo también se incluyen la pizarra para tejados y las piedras pulidas, como el granito, el travertino o el mármol.
Gemas: incluyen los diamantes, los rubíes, los zafiros y las esmeraldas.
Combustibles: incluyen el carbón, el lignito, la turba, el petróleo y el gas (aunque generalmente estos últimos no se consideran productos mineros). El uranio se incluye con frecuencia entre los combustibles.
Los depósitos de mineral pueden adoptar casi cualquier forma. Pueden aflorar a la superficie o estar a gran profundidad. En algunas de las minas de oro de la República de Sudáfrica, la extracción empieza a profundidades muy superiores a los 1.500 m y baja hasta más de 3.500 metros. En las minas se puede recuperar material poco compacto no consolidado, como los sedimentos del lecho de un río, o minerales situados en roca maciza más dura que cualquier hormigón.
Como se ha indicado antes, existen cuatro sistemas fundamentales de extracción minera: la minería de superficie (que incluye las canteras), la minería subterránea, la minería por dragado (que incluye la minería submarina) y la minería por pozos de perforación. A continuación se describe cada uno de estos sistemas. Dentro de cada uno, los puntos fundamentales permanecen constantes, pero los detalles varían según el material extraído, la dureza de la roca y la geometría del depósito. Por supuesto, existe un cierto solapamiento entre los distintos métodos.
2
MINERÍA DE SUPERFICIE
Mina Kennecott (Utah, Estados Unidos)
Situada en el suroeste de Salt Lake City, es la mayor mina a cielo abierto de cobre del mundo.

La minería de superficie es el sector más amplio de la minería, y se utiliza para más del 60% de los materiales extraídos. Puede emplearse para cualquier material. Los distintos tipos de mina de superficie tienen diferentes nombres, y, por lo general, suelen estar asociados a determinados materiales extraídos. Las minas a cielo abierto suelen ser de metales; en las explotaciones al descubierto se suele extraer carbón; las canteras suelen dedicarse a la extracción de materiales industriales y de construcción, y en las minas de placer se suelen obtener minerales y metales pesados (con frecuencia oro, pero también platino, estaño y otros).
2.1
Minas a cielo abierto
Son minas de superficie que adoptan la forma de grandes fosas en terraza, cada vez más profundas y anchas. Los ejemplos clásicos de minas a cielo abierto son las minas de diamantes de Sudáfrica, en las que se explotan las chimeneas de kimberlita, depósitos de mineral en forma cilíndrica que ascienden por la corteza terrestre. A menudo tienen una forma más o menos circular.
La extracción empieza con la perforación y voladura de la roca. Ésta se carga en camiones con grandes palas eléctricas o hidráulicas, o con excavadoras de carga frontal, y se retira del foso. El tamaño de estas máquinas llega a ser tan grande que pueden retirar 50 m3 de rocas de una vez, pero suelen tener una capacidad de entre 5 y 25 m3. La carga de los camiones puede ir desde 35 hasta 220 toneladas. Un avance de la minería moderna consiste en que las palas descarguen directamente en una trituradora móvil, desde la que se saca de la mina la roca triturada en cintas transportadoras.
El material clasificado como mineral se transporta a la planta de recuperación, mientras que el clasificado como desecho se vierte en zonas asignadas para ello. A veces existe una tercera categoría de material de baja calidad que puede almacenarse por si en el futuro pudiera ser rentable su aprovechamiento.
Muchas minas empiezan como minas de superficie y, cuando llegan a un punto en que es necesario extraer demasiado material de desecho por cada tonelada de mineral obtenida, se empiezan a utilizar métodos de minería subterránea.
2.2
Explotaciones al descubierto
Cuchara gigante de carbón
En las explotaciones mineras al descubierto se emplean a menudo cucharas enormes para aplanar la tierra o desplazarla. Las cucharas tienen dientes afilados e inclinados en su extremo frontal y son arrastradas por el suelo por poderosas máquinas. Esta cuchara tiene el tamaño de una casa pequeña.

Las explotaciones al descubierto se emplean con frecuencia, aunque no siempre, para extraer carbón y lignito. En el Reino Unido se obtienen más de 10 millones de toneladas de carbón anuales en explotaciones al descubierto. La principal diferencia entre estas minas y las de cielo abierto es que el material de desecho extraído para descubrir la veta de carbón, en lugar de transportarse a zonas de vertido lejanas, se vuelve a dejar en la cavidad creada por la explotación reciente. Por tanto, las minas van avanzando poco a poco, rellenando el terreno y devolviendo a la superficie en la medida de lo posible el aspecto que tenía antes de comenzar la extracción. Al contrario que una mina a cielo abierto, que suele hacerse cada vez más grande, una explotación al descubierto alcanza su tamaño máximo en muy poco tiempo. Cuando se completa la explotación, el foso que queda se puede convertir en un lago o rellenarse con el material procedente de la excavación realizada al comenzar la mina.
Parte del equipo empleado en las explotaciones al descubierto es el mismo que el de las minas a cielo abierto, sobre todo el utilizado para extraer el carbón. Para obtener las rocas de desecho situadas por encima, la llamada sobrecarga, se emplean los equipos más grandes de toda la minería. En Alemania existe una excavadora de cangilones que puede extraer 250.000 m3 de material diarios. La máquina va montada sobre orugas y es automotriz. Otra máquina de gran tamaño que se emplea sobre todo en explotaciones al descubierto es la excavadora de cuchara de arrastre; una de estas máquinas, empleada en el Reino Unido en el pasado, extraía 50 m3 de sobrecarga cada vez.
2.3
Canteras
Las canteras son bastante similares a las minas a cielo abierto, y el equipo empleado es el mismo. La diferencia es que los materiales extraídos suelen ser minerales industriales y materiales de construcción. En general, casi todo el material que se obtiene de la cantera se transforma en algún producto, por lo que hay bastante menos material de desecho. A su vez, esto significa que al final de la vida útil de la cantera queda una gran excavación. No obstante, debido a los bajos precios que suelen tener los productos de la mayoría de las canteras, éstas tienen que estar situadas relativamente cerca de los mercados. Si no fuera así, los gastos de transporte podrían hacer que la cantera no fuera rentable. Por esta razón, muchas se encuentran cerca de aglomeraciones urbanas. También supone que las cavidades creadas por muchas canteras adquieren un cierto valor como vertederos de residuos urbanos. En las cercanías de las grandes ciudades, puede ser que la excavación creada por la cantera tenga un valor superior al del material extraído. Debido al bajo coste actual del transporte marítimo, se están abriendo nuevos tipos de grandes canteras costeras. Estas canteras pueden servir a mercados alejados porque los gastos de transporte son lo bastante bajos como para que sus productos sigan siendo competitivos.
2.4
Minas de placer

Minería de placer
La minería de placer implica la excavación de depósitos de aluvión poco compactos, como arena, grava, limo o arcilla. Los minerales valiosos se separan de los materiales de aluvión mediante un sistema de cribas y lavaderos. Entre los minerales de placer figuran metales como el oro, el platino o el estaño y gemas como diamantes y rubíes.

Los placeres son depósitos de partículas minerales mezcladas con arena o grava. Las minas de placer suelen estar situadas en los lechos de los ríos o en sus proximidades, puesto que la mayoría de los placeres son graveras de ríos actuales o graveras fósiles de ríos desaparecidos. No obstante, los depósitos de playas, los sedimentos del lecho marino y los depósitos de los glaciares también entran en esta categoría. La naturaleza de los procesos de concentración que dan lugar a los placeres hace que en este tipo de minas se obtengan materiales densos y ya liberados de la roca circundante. Eso hace que el proceso de extracción sea relativamente sencillo y se limite al movimiento de tierras y al empleo de sistemas sencillos de recuperación física, no química, para obtener el contenido útil. El material extraído puede depositarse en zonas ya explotadas a medida que va avanzando la mina, a la vez que se recupera la superficie. Las minas de placer terrestres emplean equipos similares a los de otras minas de superficie. Sin embargo, muchas minas de placer se explotan mediante dragado (ver más adelante).
3
MINERÍA SUBTERRÁNEA
Galería en una mina
Este minero maneja una perforadora a más de 1.500 m de profundidad. En todas las galerías subterráneas, los mineros se enfrentan a los mismos peligros: posible acumulación de gases peligrosos o polvo de carbón explosivo y riesgo de derrumbe del techo. Para reducir el peligro se emplean buenos sistemas de ventilación, se espolvorea la roca con caliza y se entiban las galerías con acero.

La minería subterránea se puede subdividir en minería de roca blanda y minería de roca dura. Los ingenieros de minas hablan de roca “blanda” cuando no exige el empleo de explosivos en el proceso de extracción. En otras palabras, las rocas blandas pueden cortarse con las herramientas que proporciona la tecnología moderna. La roca blanda más común es el carbón, pero también lo son la sal común, la potasa, la bauxita y otros minerales. La minería de roca dura utiliza los explosivos como método de extracción.
3.1
Minería subterránea de roca blanda: el carbón
En gran parte de Europa, la minería se asocia sobre todo con la extracción del carbón. En los comienzos se empleaban métodos de extracción que implicaban la perforación y la voladura con barrenos, pero desde 1950 ya no se utilizan esos métodos, salvo en unas pocas minas privadas.
En la minería de roca blanda se perforan en la veta de carbón dos túneles paralelos separados por unos 300 m (llamados entradas). A continuación se abre una galería que une ambas entradas, y una de las paredes de dicha galería se convierte en el frente de trabajo para extraer el carbón. El frente se equipa con sistemas hidráulicos de entibado extremadamente sólidos, que crean un techo por encima del personal y la maquinaria y soportan el techo de roca situado por encima. En la parte frontal de estos sistemas de entibado se encuentra una cadena transportadora. Los lados de la cadena sostienen una máquina de extracción, la cizalladora, que corta el carbón mediante un tambor cilíndrico con dientes, que se hace girar contra el frente de carbón. Los trozos de carbón cortados caen a la cadena transportadora, que los lleva hasta el extremo del frente de pared larga. Allí, el carbón pasa a una cinta transportadora, que lo lleva hasta el pozo o lo saca directamente de la mina. Cuando se ha cortado toda la longitud del frente, se hace avanzar todo el sistema de soporte, y la cizalladora empieza a cortar en sentido opuesto, extrayendo otra capa de carbón. Por detrás de los soportes hidráulicos, el techo cede y se viene abajo. Esto hace que esta forma de extracción siempre provoque una depresión del terreno situado por encima.
En Sudáfrica, Estados Unidos y Australia, gran parte de la extracción se realiza mediante el método de explotación por cámaras y pilares, en el que unas máquinas llamadas de extracción continua abren una red de túneles paralelos y perpendiculares, lo que deja pilares de carbón que sostienen el techo. Este método desaprovecha una proporción importante del combustible, pero la superficie suele ceder menos.
3.2
Minería subterránea de roca dura: metales y minerales
En la mayoría de las minas de roca dura, la extracción se realiza mediante perforación y voladura. Primero se realizan agujeros con perforadoras de aire comprimido o hidráulicas. A continuación se insertan barrenos en los agujeros y se hacen explotar, con lo que la roca se fractura y puede ser extraída. Después se emplean máquinas de carga especiales —muchas veces con motores diesel y neumáticos— para cargar la roca volada y transportarla hasta galerías especiales de gran inclinación. La roca cae por esas galerías y se recoge en el pozo de acceso, donde se carga en contenedores especiales denominados cucharones y se saca de la mina. Más tarde se transporta a la planta de procesado, si es mineral, o al vertedero, si es material de desecho.
Para poder acceder al yacimiento de mineral hay que excavar una red de galerías de acceso, que se suele extender por la roca de desecho que rodea el yacimiento. Este trabajo se denomina desarrollo; una mina de gran tamaño, como la mina sudafricana de platino de Rustenberg, puede abrir hasta 4 km de túneles cada mes. La extracción del mineral propiamente dicho se denomina arranque, y la elección del método depende de la forma y orientación del yacimiento. En los depósitos tubulares horizontales hay que instalar sistemas de carga y transporte mecanizados para manejar la roca extraída. En los yacimientos muy inclinados, una gran parte del movimiento de la roca puede efectuarse por gravedad. En el método de socavación de bloques se aprovecha la fuerza de la gravedad incluso para romper la roca. Se socava el bloque que quiere extraerse y se deja que caiga por su propio peso.
La minería subterránea es la más peligrosa, por lo que se prefiere emplear alguno de los métodos superficiales siempre que resulte posible. Además, la explotación subterránea de un yacimiento exige una mayor complejidad técnica, aunque las instalaciones para la extracción varían notablemente según las características de la estructura del propio yacimiento, del tamaño de la unidad de producción y del coste de la inversión.
4
MINERÍA POR DRAGADO
El dragado de aguas poco profundas es con toda probabilidad el método más barato de extracción de minerales. Por aguas poco profundas se entienden aguas de hasta 65 m. En esas condiciones se pueden recuperar sedimentos poco compactos empleando dragas con cabezales de corte situados en el extremo de tubos de succión, o con una cadena de cangilones de excavación que gira alrededor de un brazo.
La minería por dragado se está modernizando: por ejemplo, en la mina de Kovin, situada en territorio serbio, se emplea una draga para extraer dos capas de lignito y los lechos de grava que las separan, en un lago artificial, junto al río Danubio, creado para este fin. Se prevé que en el futuro se introduzcan más dragas de este tipo, que permiten una extracción selectiva y precisa.
La minería oceánica es un método reciente. En la actualidad se realiza en las plataformas continentales, en aguas relativamente poco profundas. Entre sus actividades están la extracción de áridos, de diamantes (frente a las costas de Namibia y Australia) y de oro (en diversos placeres de todo el mundo).
Ya se ha diseñado y probado la tecnología para realizar actividades mineras en fondos marinos profundos. A profundidades de hasta 2.500 o 3.000 m hay conglomerados de rocas ricas en metales denominadas nódulos de manganeso por ser éste el principal metal que contienen. En los nódulos también hay cantidades significativas de otros metales, entre ellos cobre y níquel. La tecnología de dragado para su recuperación está ya disponible, aunque ese tipo de actividades se encuentra en fase experimental hasta que las condiciones económicas y políticas las hagan factibles.
5
MINERÍA POR POZOS DE PERFORACIÓN
Numerosos materiales pueden extraerse del subsuelo a través de un pozo de perforación sin necesidad de excavar galerías y túneles. Así ocurre con los materiales líquidos como el petróleo y el agua. También se pueden recuperar materiales solubles en agua haciendo pasar agua por ellos a través del pozo de perforación y extrayendo la disolución. Este sistema se denomina extracción por disolución. También se puede emplear un disolvente que no sea agua para disolver algún mineral determinado; en ese caso suele hablarse de lixiviación in situ. El azufre es un caso especial: como funde a una temperatura bastante baja (108 ºC) es posible licuarlo calentándolo por encima de dicha temperatura y bombear a la superficie el azufre fundido. En la actualidad también existen métodos para recuperar materiales insolubles a través de pozos de perforación. Algunos sólidos, como el carbón, son lo suficientemente blandos o están lo suficientemente fracturados para poder ser cortados por un chorro de agua a presión. Si se rompen en trozos pequeños, éstos pueden bombearse a la superficie en forma de lodo a través de un pozo de perforación. Naturalmente, este método también permite recuperar sólidos que ya de por sí se encuentran en forma de partículas finas poco compactas. En Hungría se están realizando experimentos serios para extraer carbón y bauxita mediante este método.
5.1
Extracción del azufre
El proceso empleado en el caso del azufre es relativamente sencillo. Se bombea agua salada caliente por un tubo exterior insertado en el pozo que se ha perforado en los lechos que contienen el azufre. Se emplea agua salada porque su punto de ebullición es más alto, por lo que puede calentarse a una temperatura superior al punto de fusión del azufre. El azufre fundido se bombea a la superficie por un tubo interior situado dentro del tubo de agua. Por otro tubo situado dentro de los otros dos se inyecta aire comprimido para contribuir a impulsar el azufre a la superficie. El azufre no es soluble en agua, por lo que no existe el problema de perder el azufre por disolución. Las dos zonas más conocidas donde se emplea este método son Polonia —donde se desarrolló por primera vez el método— y el golfo de México.
5.2
Extracción por disolución

Mina de cobre a cielo abierto
El cobre metálico y los minerales cupríferos como la calcopirita y la bornita situados en yacimientos poco profundos se extraen en minas a cielo abierto. Posteriormente se separa el cobre de impurezas como sulfuros, carbonatos, hierro y silicatos. El cobre se emplea mucho en componentes eléctricos por su elevada conductividad.

Muchas sustancias —las más habituales son la sal común y la potasa— son solubles en agua. El método empleado para extraerlas consiste en perforar pozos hasta el yacimiento, insertar un sistema de tubos como el usado en el caso del azufre, bombear agua por el pozo dejando que disuelva la sal, bombear la salmuera resultante hacia la superficie y recuperar allí la sal disuelta. Según las minas, se puede utilizar el tubo exterior para el agua y el intermedio para la salmuera, o al contrario. En cualquier caso, el tubo interior se emplea para inyectar aire comprimido para elevar la salmuera. En Italia existen numerosas minas de disolución para extraer sal común.
5.3
Lixiviación in situ
Este sistema se considera un método alternativo de extracción para algunos metales. En particular, se ha empleado con éxito para extraer uranio y cobre. En este caso siempre se emplean pozos separados para inyectar el disolvente y para extraer la disolución de mineral. El yacimiento debe ser poroso para que el disolvente pueda fluir a través del mismo desde un pozo a otro disolviendo el mineral o metal en cuestión. Es preferible que la roca que rodea el yacimiento sea impermeable para poder controlar mejor el disolvente. Siempre que sea posible, conviene utilizar disolventes no tóxicos, ya que parte del disolvente puede pasar a la roca circundante. Este tipo de minería presenta importantes ventajas medioambientales, ya que se mueve una cantidad de roca mucho menor y las operaciones de limpieza posteriores resultan mucho más sencillas.
6
SEGURIDAD EN LAS MINAS
Todas las minas presentan problemas de seguridad, pero se considera que las subterráneas son las más peligrosas. El peligro se deriva de la naturaleza de la mina: una construcción de roca natural, que no es un buen material de ingeniería. Estadísticamente, las minas subterráneas son más peligrosas que las de superficie y, por lo general, las de roca blanda son más peligrosas que las de roca dura. Las causas principales de accidentes en la mayoría de las minas son los derrabes, esto es, los derrumbamientos de grandes rocas de las paredes de la mina. Este tipo de accidentes también incluye las caídas de rocas desde los mecanismos de transporte. La segunda causa más frecuente de accidentes en las minas es la maquinaria en movimiento. Otros riesgos son los explosivos, las inundaciones y las explosiones debidas a gases desprendidos por las rocas, como el metano (grisú). Este último fenómeno se da especialmente en las minas de carbón.
La profundidad de las minas puede producir riesgos, ya que las tensiones a que están sometidas las galerías por el peso de las rocas situadas encima pueden superar la resistencia de la roca y hacer que ésta se derrumbe de forma explosiva. Se lleva investigando muchos años para mejorar el diseño de las minas de modo que se elimine o reduzca el peligro de dichos derrumbes.
Además del riesgo de accidentes, los mineros pueden contraer una serie de enfermedades laborales. Esto ocurre sobre todo en las minas subterráneas. En todas las minas se produce polvo, y su inhalación puede causar diversas enfermedades de los pulmones, como la silicosis o neumoconiosis en las minas de carbón, la asbestosis y otras. Además, en las minas pueden aparecer gases tóxicos, como sulfuro de hidrógeno o monóxido de carbono. Muchas minas, en especial las de uranio, pueden presentar problemas de radiación por las emanaciones de radón procedentes de la roca.
Debido al carácter peligroso de estos trabajos, los principales países mineros tienen leyes y normativas muy estrictas sobre la seguridad en las minas. Dichas normas cubren la calidad del aire, el entibado de las galerías, los explosivos, la iluminación, el ruido y todos los demás riesgos que pueden darse en las minas.

Entradas populares

Me gusta

Seguidores