Orden de las operaciones





Si introduces esta secuencia en una calculadora: 3     4     5     , con algunos modelos obtendrás “35” como respuesta y con otros “23”. El primer modelo ha llevado a cabo las operaciones en el orden en el cual fueron introducidas (3 + 4 primero, lo cual da 7, y después 7 × 5, obteniendo 35 como resultado). En cambio, el segundo tipo de calculadora ha iniciado la operación con la multiplicación y después ha añadido 3 al resultado (4 × 5 da 20, y después 3 + 20 da 23). Esta última calculadora tiene en cuenta las reglas de precedencia de las operaciones (decimos que es una calculadora científica) mientras que la otra no las considera.

I. Aplicar el orden de las operaciones
1. Sin paréntesis
En una serie de operaciones sin paréntesis los cálculos deben ser realizados en el siguiente orden:
—primero, las raíces cuadradas;
—después, las potencias (en el caso de que haya varias potencias empezaremos por la que está más a la izquierda, es decir, seguiremos el orden natural que empleamos al leer);
—a continuación, las multiplicaciones o divisiones (y en caso de que haya varias, siempre de izquierda a derecha);
—finalmente las sumas o restas (empezando siempre por aquellas que se encuentren más a la izquierda).
Resumiendo, podemos decir que las raíces preceden a las potencias, las potencias preceden a las multiplicaciones y divisiones, y estas tienen prioridad sobre las sumas y las restas.
Ejemplo: vamos a calcular A 7 + 3 × 4² – 6.
Primero realizamos el cálculo de la potencia:
A = 7 + 3 × 16 – 6
Después las multiplicaciones (o divisiones):
A = 7 + 48 – 6
Y finalmente las sumas o restas:
A = 55 – 6
A = 49
2. Con paréntesis
Si hay paréntesis, los cálculos dentro de cada pareja de paréntesis hay que realizarlos de acuerdo con las reglas de precedencia que acabamos de ver en el apartado anterior. También es muy importante tener en cuenta que si hay paréntesis anidados como: , entonces, habrá que empezar por resolver los paréntesis más interiores.
Ejemplo: queremos calcular B = (–3) + (4 + 5) × (7 – 12 × (5 – 2)).
Realizamos los cálculos comenzando por el paréntesis más interior (5 - 2):
B = (–3) + (4 + 5) × (7 – 12 × 3)
Aplicamos las reglas de precedencia de las operaciones dentro de cada uno de los paréntesis:
B = (–3) + 9 × (7 –  36)
B = (–3) + 9 × (29)
B = (–3) + (261)
B = –264
Nota: debemos prestar especial atención a los paréntesis implícitos, o que se consideran sobreentendidos. Los siguientes ejemplos servirán para comprender esto y nos ayudarán a interpretar correctamente algunos tipos de operaciones.
Si nos dan una expresión como esta:

Nosotros debemos interpretar esto:

Por consiguiente, tenemos:

Si nos dan esta expresión: , debemos entenderla así: . Por lo tanto, obtenemos: .
II. Resolver con calculadora
Vamos a resolver las operaciones ABC y D de los epígrafes anteriores con una calculadora científica.
Ejemplo 1: calcular A = 7 + 3 × 4² – 6.
Sería necesario —como regla general, dependiendo del modelo de calculadora— introducir la siguiente secuencia (¡los dibujos de las teclas pueden ser diferentes según el modelo de calculadora!):
7     3     4        6   
El resultado obtenido debería ser: 49.
Ejemplo 2: calcular B =  (–3) + (4 + 5) × (7 – 12 × (5 – 2)).
Introducimos la secuencia:
3       ( 4     5 )     ( 7     1 2     ( 5     2 ) )   
El resultado obtenido debería ser: -264.
Nota: es importante diferenciar la tecla de la operación resta de esta otra: , que se usa solamente para obtener el valor opuesto de un número dado o para introducir un número negativo. Por ejemplo, si queremos escribir el valor -3 en la calculadora: 3. Y si lo que deseamos es hallar el opuesto de un número dado: 4 = - 4.
Ejemplo 3: calcular 
Introducimos la secuencia:
1 1     (  3     4  )     ( 1 3     5 )   
Observa que el orden de precedencia de las operaciones ha de ser respetado.
Dependiendo de la calculadora, el resultado que obtendremos en la pantalla aparecerá expresado en forma fraccionaria (81/8) o decimal (10,125).
Ejemplo 4: calcular .
Introducimos la secuencia:
( 1 6     9  )       
O bien:    ( 1 6     9  )   
El resultado debería ser: 5.
Notas:
—Existe una tecla para calcular potencias mayores que 2:
, dependiendo del tipo de calculadora.
Por ejemplo, para calcular 53, introducimos la secuencia:
5   3  , y el resultado debería ser: 125.
—Existe una tecla para calcular el inverso de un número:
, dependiendo del modelo de calculadora.
Por ejemplo, para calcular , el camino más rápido sería introducir la siguiente secuencia:
3     2      , y el resultado debería ser: 0,2.

Entradas populares

Me gusta

Seguidores