Medidores eléctricos





Los grandes inventos: Medidores eléctricos

Medidores eléctricos, instrumentos que miden magnitudes eléctricas, como intensidad de corriente, carga, potencial, energía, resistencia eléctrica, capacidad e inductancia. El resultado de estas medidas se expresa normalmente en una unidad eléctrica estándar: amperios, culombios, voltios, julios, ohmios, faradios o henrios (véase Unidades eléctricas). Dado que todas las formas de la materia presentan una o más características eléctricas es posible tomar mediciones eléctricas de un elevado número de fuentes.
2
MECANISMOS BÁSICOS DE LOS MEDIDORES
Las magnitudes eléctricas no se pueden medir por observación directa y por ello se utiliza alguna propiedad de la electricidad para producir una fuerza física susceptible de ser detectada y medida. Por ejemplo, en el galvanómetro, uno de los primeros instrumentos de medida que se inventó, la fuerza que se produce entre un campo magnético y una bobina por la que circula una corriente eléctrica produce una desviación de la bobina. Dado que la desviación es proporcional a la intensidad de la corriente se utiliza una escala calibrada para medir la intensidad de la corriente eléctrica. La acción electromagnética entre corrientes, la fuerza entre cargas eléctricas y el calentamiento provocado por una resistencia conductora son algunas de las propiedades de la electricidad utilizadas para obtener mediciones analógicas.
3
CALIBRACIÓN DE LOS MEDIDORES
Para garantizar la uniformidad y la precisión de las medidas de los medidores eléctricos se calibran de acuerdo con los patrones de medida aceptados para una determinada unidad eléctrica, como el ohmio, el amperio, el voltio o el vatio.
4
PATRONES PRINCIPALES Y MEDIDAS ABSOLUTAS
Los patrones principales del ohmio y el amperio se basan en definiciones de estas unidades aceptadas a nivel internacional y basadas en la masa, la longitud del conductor y el tiempo. Las técnicas de medición que utilizan estas unidades básicas son precisas y reproducibles. Por ejemplo, las medidas absolutas de amperios implican la utilización de una especie de balanza que mide la fuerza que se produce entre un conjunto de bobinas fijas y una bobina móvil. Estas mediciones absolutas de intensidad de corriente y diferencia de potencial tienen su aplicación principal en el laboratorio, mientras que en la mayoría de los casos se utilizan medidas relativas. Todos los medidores que se describen en los párrafos siguientes permiten hacer lecturas relativas.
5
MEDIDORES DE CORRIENTE

5.1
Galvanómetros
Medidores eléctricos
Los medidores eléctricos permiten determinar distintas magnitudes eléctricas. Dos de estos dispositivos son el amperímetro y el voltímetro, ambos variaciones del galvanómetro. En un galvanómetro, un imán crea un campo magnético que genera una fuerza medible cuando pasa corriente por una bobina cercana. El amperímetro desvía la corriente por una bobina a través de una derivación (ilustrada debajo del amperímetro) y mide la intensidad de la corriente que fluye por el circuito, al que se conecta en serie. El voltímetro, en cambio, se conecta en paralelo y permite medir diferencias de potencial. Para que la corriente que pase por él sea mínima, la resistencia del voltímetro (indicada por la línea quebrada situada debajo) tiene que ser muy alta, al contrario que en el amperímetro.

Los galvanómetros son los instrumentos principales para detectar el paso de una corriente eléctrica y para medir su intensidad. El mecanismo del galvanómetro está diseñado de forma que un imán permanente o un electroimán produce un campo magnético que genera una fuerza en una bobina cercana al imán cuando por ésta circula una corriente eléctrica. El elemento móvil puede ser el imán o la bobina. La fuerza inclina el elemento móvil en un grado proporcional a la intensidad de la corriente.
En los galvanómetros de imán móvil se aprovecha el par de fuerzas que ejerce la corriente estudiada sobre un pequeño imán móvil. En los galvanómetros de cuadro móvil se utiliza la acción de un imán fijo sobre una bobina móvil recorrida por una corriente desconocida.
Un ejemplo de galvanómetro de cuadro móvil es el galvanómetro de inclinación de D´Arsonval. En este galvanómetro la corriente que se trata de medir circula por una bobina formada por varias espiras de alambre muy fino, que puede girar en el campo de un imán por estar suspendida de un alambre muy delgado. Cuando una corriente eléctrica circula por esta bobina experimenta la acción de un par de fuerzas proporcional a la corriente. Este par hace girar la bobina hasta que se equilibra por el par recuperador proporcionado por el alambre al retorcerse. El ángulo de giro se mide por la desviación experimentada por un haz luminoso que incide sobre un pequeño espejo unido a la bobina móvil y que es reflejado hacia un dial.
Los galvanómetros tienen denominaciones distintas según la magnitud de la corriente que pueden medir.
5.2
Amperímetros
Para que un galvanómetro funcione como amperímetro hay que tener en cuenta que por el fino hilo de la bobina de un galvanómetro sólo puede circular una intensidad de corriente pequeña. Si hay que medir intensidades mayores, se acopla una derivación de baja resistencia, denominada shunt, a los terminales del medidor. La mayor parte de la corriente pasa por la resistencia de la derivación, pero la pequeña cantidad que fluye por el medidor sigue siendo proporcional a la intensidad total. Al utilizar esta proporcionalidad, el galvanómetro se puede emplear para medir intensidades de varios cientos de amperios.
Un microamperímetro está calibrado en millonésimas de amperio y un miliamperímetro en milésimas de amperio.
5.3
Galvanómetros de corriente alterna: electrodinamómetros y galvanómetros de resonancia
Los galvanómetros convencionales no se pueden emplear para medir corrientes alternas porque las oscilaciones de la corriente producirían una inclinación en las dos direcciones.
Una variante del galvanómetro, el electrodinamómetro, se puede utilizar para medir corrientes alternas mediante una inclinación electromagnética. Este medidor contiene una bobina fija situada en serie con una bobina móvil, que se utiliza en lugar del imán permanente del galvanómetro. Dado que la corriente de la bobina fija y la móvil se invierte en el mismo momento, la inclinación de la bobina móvil tiene lugar siempre en el mismo sentido, produciéndose una medición constante de la intensidad. El electrodinamómetro también sirve para medir corrientes continuas.
El galvanómetro de resonancia es un galvanómetro de cuadro móvil que se utiliza para detectar y medir corrientes alternas muy débiles. Las características del aparato se eligen de manera que el cuadro móvil tenga un periodo de oscilación igual al de la corriente estudiada para que el galvanómetro entre en resonancia con la corriente.
5.4
Medidores de termopar
Para medir corrientes alternas de alta frecuencia se utilizan medidores que dependen del efecto calorífico de la corriente. En los medidores de termopar se hace pasar la corriente por un hilo fino que calienta la unión del termopar. La electricidad generada por el termopar se mide con un galvanómetro convencional. En los medidores de hilo incandescente la corriente pasa por un hilo fino que se calienta y se estira. El hilo está unido a un puntero móvil que se desplaza por una escala calibrada en amperios. Véase Termoelectricidad.
6
MEDICIÓN DEL VOLTAJE
Osciloscopio
El osciloscopio se utiliza a menudo para tomar medidas en circuitos eléctricos. Es especialmente útil porque puede mostrar cómo varían dichas medidas a lo largo del tiempo, o cómo varían dos o más medidas una respecto de otra.

El instrumento más utilizado para medir la diferencia de potencial (voltaje) es un galvanómetro que cuenta con una gran resistencia unida en serie a la bobina. Cuando se conecta un medidor de este tipo a una batería o a dos puntos de un circuito eléctrico entre los que existe una diferencia de potencial, circula una cantidad reducida de corriente (limitada por la resistencia en serie) a través del medidor. La corriente es proporcional al voltaje, que se puede medir si el galvanómetro se calibra para ello. Cuando se usa el tipo adecuado de resistencias en serie, un galvanómetro sirve para medir niveles muy distintos de voltajes. El instrumento más preciso para medir una fuerza electromotriz es el potenciómetro, que mide esta magnitud al compararla con una fuerza electromotriz variable y de valor conocido, opuesta a la que se quiere medir.
Para medir voltajes de corriente alterna se utilizan medidores de alterna con alta resistencia interior, o medidores similares con una fuerte resistencia en serie.
Los demás métodos de medición del voltaje utilizan tubos de vacío y circuitos electrónicos y resultan muy útiles para hacer mediciones a altas frecuencias. Un dispositivo de este tipo es el voltímetro de tubo de vacío. En la forma más simple de este tipo de voltímetro se rectifica una corriente alterna en un tubo de diodo y se mide la corriente rectificada con un galvanómetro convencional. Otros voltímetros de este tipo utilizan las características amplificadoras de los tubos de vacío para medir voltajes muy bajos. El osciloscopio de rayos catódicos se emplea también para hacer mediciones de voltaje, ya que la inclinación del haz de electrones es proporcional al voltaje aplicado a las placas o electrodos del tubo.
7
OTROS TIPOS DE MEDICIONES

7.1
Puente de Wheatstone
Puente de Wheatstone
Este circuito, denominado puente de Wheatstone, está formado por tres resistencias conocidas y una desconocida, conectadas a una fuente de corriente continua y a un galvanómetro. Variando el valor de una de las resistencias conocidas, el puente se puede ajustar a cualquier valor de la resistencia desconocida, que se calcula a partir de los valores de las otras resistencias.

Las mediciones más precisas de la resistencia se obtienen con un circuito llamado puente de Wheatstone, en honor al físico británico Charles Wheatstone. Este circuito consiste en tres resistencias conocidas y una resistencia desconocida, conectadas entre sí en forma de diamante. Se aplica una corriente continua a través de dos puntos opuestos del diamante y se conecta un galvanómetro como detector de cero a los otros dos puntos. Cuando todas las resistencias se nivelan, las corrientes que circulan por los dos brazos del circuito se igualan, lo que elimina el paso de corriente por el galvanómetro. Variando el valor de una de las resistencias conocidas, el puente se puede ajustar a cualquier valor de la resistencia desconocida, que se calcula a partir de los valores de las otras resistencias. Se emplean puentes de este tipo para medir la inductancia y la capacitancia de los componentes de un circuito. Para ello se sustituyen las resistencias por inductancias y capacitancias conocidas. Estos puentes se suelen denominar puentes de corriente alterna porque se utilizan fuentes de corriente alterna en lugar de corriente continua. A menudo los puentes se nivelan con un timbre en vez de un galvanómetro, que cuando el puente no está nivelado emite un sonido que corresponde a la frecuencia de la fuente de corriente alterna; cuando se ha nivelado no se escucha ningún tono.
7.2
Vatímetros
La potencia consumida por cualquiera de las partes de un circuito se mide con un vatímetro, un instrumento parecido al electrodinamómetro. El vatímetro tiene su bobina fija dispuesta de forma que la atraviese toda la intensidad del circuito, mientras que la bobina móvil se conecta en serie con una resistencia grande y sólo deja pasar una parte proporcional del voltaje de la fuente. La inclinación resultante de la bobina móvil depende tanto de la intensidad como del voltaje y se puede calibrar directamente en vatios, ya que la potencia es el producto del voltaje y la intensidad de la corriente.
7.3
Contadores de servicio
El contador de servicio es un dispositivo que mide la energía total consumida en un circuito eléctrico doméstico. Es parecido al vatímetro, pero se diferencia de éste en que la bobina móvil se reemplaza por un rotor. El rotor, controlado por un regulador magnético, gira a una velocidad proporcional a la cantidad de potencia consumida. El eje del rotor está conectado con engranajes a un conjunto de indicadores que registran el consumo total en vatios por hora.

Resonancia mecánica





Los grandes inventos: Resonancia mecánica

Hundimiento del puente de Tacoma Narrows
El puente original de Tacoma Narrows se extendía 1.810 m para salvar un pequeño canal cerca de Tacoma, en el estado de Washington (Estados Unidos). El puente fue abierto al tráfico el 1 de julio de 1940. Cuatro meses después se vino abajo durante un temporal de viento con rachas que alcanzaron los 68 km/h. La catástrofe fue atribuida a la resonancia, un fenómeno físico en el que una fuerza relativamente pequeña aplicada repetidamente aumenta la amplitud de un sistema oscilante. Esta fuerza repetitiva hizo que el puente se elevara y balanceara, hasta que finalmente se rompió y se precipitó al agua.

Resonancia (mecánica), situación en la que un sistema mecánico, estructural o acústico vibra en respuesta a una fuerza aplicada con la frecuencia natural del sistema o con una frecuencia próxima. La frecuencia natural es aquella a la que el sistema vibraría si lo desviáramos de su posición de equilibrio y lo dejáramos moverse libremente. Si se excita un sistema mediante la aplicación continuada de fuerzas externas con esa frecuencia, la amplitud de la oscilación va creciendo y puede llevar a la destrucción del sistema. El hundimiento del puente colgante de Tacoma Narrows en Puget Sound, Washington (EEUU), que tuvo lugar en 1940, fue causado por vibraciones con la frecuencia natural de la estructura producidas por el viento.
En cambio, las vibraciones cuya frecuencia no es la natural ni una de sus frecuencias armónicas (múltiplos enteros de la frecuencia natural) tienden a amortiguarse rápidamente. Por ejemplo, el arco de un violín excita las cuerdas del instrumento en una amplia gama de frecuencias. Sin embargo, sólo persiste la frecuencia básica de la cuerda, junto con sus diversos armónicos, cuya amplitud es menor. Para impedir que una estructura resuene a una frecuencia determinada suele cambiarse su rigidez o su masa. El aumento de la rigidez aumenta la frecuencia natural, mientras que el aumento de la masa la disminuye.
En física atómica y nuclear también se producen fenómenos de resonancia; por ejemplo, una radiación electromagnética de determinadas frecuencias puede excitar a los átomos y hacerlos subir a niveles de mayor energía, mientras que una radiación no resonante no los afecta.

Resonancia electrónica





Los grandes inventos: Resonancia electrónica

Resonancia (electrónica), característica de un circuito eléctrico por la cual las impedancias combinadas de la capacitancia y la inductancia se anulan o se refuerzan entre sí, dando lugar a impedancias máximas o mínimas. La impedancia de la corriente alterna equivale a la resistencia de la corriente.
La resonancia aparece con una frecuencia determinada en cada circuito. Esta frecuencia, denominada frecuencia de resonancia, depende de los valores de inductancia y de capacitancia del circuito (véase Condensador). Si se aplica un voltaje alterno con la frecuencia de resonancia a un circuito en que la capacitancia y la inductancia están conectadas en serie, la impedancia del circuito se reduce al mínimo y el circuito conduce la cantidad máxima de corriente. Si la capacitancia y la inductancia se conectan en paralelo, se produce el efecto contrario: la impedancia es muy elevada y el circuito conduce una cantidad reducida de corriente.
Los circuitos resonantes se utilizan en componentes eléctricos, por ejemplo en filtros, para seleccionar o rechazar corrientes con frecuencias concretas. Los filtros en que puede variarse la capacitancia o la inductancia se utilizan para sintonizar receptores de radio y de televisión a la frecuencia de las emisoras, de forma que el receptor acepta la frecuencia del emisor y rechaza las demás. Véase Electrónica.

Radiología





Los grandes inventos: Radiología

Resonancia magnética
Esta resonancia magnética (RM) de la cabeza de un adulto normal muestra el encéfalo, vías aéreas y tejidos blandos de la cara. La corteza cerebral aparece en gris y amarillo, formando la mayor parte del tejido cerebral; el cerebelo (al centro y a la izquierda en rojo) y el tronco cerebral (en el centro en rojo) son también muy visibles.

Radiología, especialidad médica que utiliza la radiación para el diagnóstico y el tratamiento de las enfermedades. Los rayos X y los restantes tipos de radiación son formas de energía producidas durante la desintegración de los átomos. La radiología, en sus vertientes diagnóstica y terapéutica, emplea radiaciones ionizantes (rayos alfa, beta, gamma y rayos X).
La radiología pudo desarrollarse gracias al descubrimiento de los rayos X por el físico alemán Wilhelm Conrad Roentgen en 1895. Roentgen fue galardonado con el Premio Nobel de Física por su trabajo. Hay otras formas de energía radiante que también permiten la obtención de imágenes médicas: los ultrasonidos son un ejemplo de ello. En la técnica denominada resonancia nuclear magnética, las diferencias en los tiempos de relajación de los núcleos de hidrógeno de los tejidos en un campo magnético artificial permiten la obtención de imágenes. Quizá sea más adecuada, por tanto, la denominación técnicas de imagen en medicina que el concepto de radiología diagnóstica para definir esta especialidad.
La radiología terapéutica se denomina en ocasiones radiación oncológica, y emplea la radiación ionizante como forma de tratamiento. Cada vez es más frecuente combinar esta modalidad con otras formas de tratamiento, como los fármacos o la hipertermia (fiebre inducida artificialmente).

2
RADIOLOGÍA DIAGNÓSTICA
Tomografía axial computerizada
La tomografía axial computerizada (TAC) proporciona una imagen de una sección transversal de una parte del cuerpo mediante el paso de un haz de rayos X estrecho a través del organismo. La TAC es una herramienta de diagnóstico muy precisa e indolora que permite explorar el interior del organismo sin el empleo de procedimientos invasivos.

Subespecialidad de la radiología que estudia la estructura anatómica y la fisiología de los tejidos normales y de los tejidos alterados por distintas enfermedades a través de imágenes estáticas o dinámicas. La gran mayoría de las imágenes se obtienen exponiendo la región corporal que se quiere analizar a un haz de rayos X: éstos inciden luego sobre una película sensible (placa), y producen una imagen estática. La imagen obtenida se denomina radiografía o placa de rayos X y puede ser de varios tipos: una radiografía simple, como la habitual placa de tórax; una tomografía (del griego, tomes, ‘sección’), radiografía obtenida de manera que, a través del cálculo del momento de la exposición y el movimiento de la placa de rayos, se obtiene la representación de un plano predeterminado de la región corporal atravesada por el haz; o una tomografía axial computerizada (escáner, o TAC): un fino haz de rayos se proyecta desde todos los puntos de un área circular alrededor de la región a estudiar, y el análisis computerizado de la información obtenida permite obtener una imagen que representa un corte de esa región.
Enema de doble contraste del colon
La radiología nuclear utiliza los rayos X como herramienta diagnóstica para examinar los órganos y los vasos sanguíneos. El bario, un material radiopaco o medio de contraste, se utiliza con frecuencia para detectar trastornos intestinales como una úlcera o un engrosamiento de la pared intestinal.

Otras imágenes médicas no emplean rayos X sino ultrasonidos, resonancia magnética nuclear (RMN), o el registro de la radiactividad emitida por isótopos que se administran al paciente y se acumulan en ciertos órganos o sistemas orgánicos específicos: estas técnicas se incluyen en el ámbito de la radiología nuclear o medicina nuclear; también pertenece a esta subespecialidad la técnica denominada tomografía de emisión de positrones (TEP), que utiliza las pautas de retraso de los positrones para estudiar diferentes reacciones metabólicas corporales. Cada técnica tiene sus particularidades, y por tanto en cada situación clínica habrá una técnica de imagen idónea para poner de manifiesto el proceso patológico que afecta a esa región corporal. El radiólogo puede así elegir, de acuerdo con el médico que atiende al paciente, la modalidad diagnóstica o técnica de imagen que mejor se adapte a la enfermedad en estudio.
Ecografía
Los ultrasonidos (ecografía), ondas sonoras con una frecuencia superior a la detectable por el oído humano, se utilizan con frecuencia en obstetricia para diagnosticar la edad y el crecimiento normal del feto. El dispositivo emisor de ultrasonidos, llamado transductor, se coloca contra la piel del abdomen de la mujer embarazada. Las ondas de sonido se reflejan de forma distinta según entren en contacto con tejidos de densidad y elasticidad diferentes. El patrón de los ecos es detectado por el transductor y convertido en una imagen móvil que se visualiza en un monitor. Los ultrasonidos se emplean también para detectar tumores, lesiones y otras anomalías en el hígado, los riñones, los ovarios, los ojos y otros órganos.

Muchos órganos y sistemas orgánicos invisibles con las técnicas radiológicas convencionales pueden ponerse de manifiesto con el uso de unas sustancias opacas a la radiación denominadas medios de contraste, que se administran al paciente por vía oral, por inhalación o por inyección. Las exploraciones más habituales que utilizan medios de contraste son el tránsito gastrointestinal (tramo alto del tubo digestivo), el enema de bario (colon), la artrografía (se inyecta contraste en una articulación), la mielografía (se introduce contraste en el canal raquídeo) y la angiografía (se inyecta contraste en una arteria, una vena o un vaso linfático). Durante la mayoría de las exploraciones con medio de contraste, el radiólogo observa directamente por fluoroscopia el paso del contraste por el interior del organismo.
La imágenes dinámicas recogen el movimiento de los órganos o sistemas orgánicos (como el tracto gastrointestinal), o el flujo de contraste en los vasos sanguíneos o en el canal raquídeo. Para obtener imágenes dinámicas se puede registrar la imagen en una pantalla móvil sensible a la radiación (fluoroscopia), o se pueden grabar las imágenes en una película (cinerradiografía) o cinta de vídeo. La cinta, o la película, permiten almacenar la información de manera permanente; con la fluoroscopia (similar a las imágenes de televisión), esta información se pierde, aunque durante la exploración fluoroscópica siempre existe la posibilidad de guardar imágenes radiográficas (placas) para utilizarlas más adelante.
La utilización de radiaciones ionizantes para la valoración de las enfermedades debe seguir un planteamiento similar a la utilización de los medicamentos para su tratamiento: las técnicas radiográficas de imagen sólo se deben realizar en las situaciones clínicas en que esté indicado realizarlas, y debe ser el médico, u otra persona cualificada, quien solicite la prueba. Aunque hay un riesgo potencial derivado de la pequeña dosis de radiación que recibe el paciente en una exploración radiográfica, no hay pruebas objetivas de que esta exposición, cuando la prueba ha sido correctamente indicada y ha sido realizada por personal cualificado, tenga efectos adversos sobre la salud.
3
RADIOLOGÍA TERAPÉUTICA
Radioterapia
Un paciente recibe radioterapia para el tratamiento de un cáncer de la columna vertebral. En este procedimiento se utiliza el radioisótopo cobalto 60 como fuente de la radiación gamma. La elevada dosis de radiación se aplica mediante un láser dirigido sobre un área de tratamiento determinada.

Consiste en la utilización de radiaciones ionizantes en el tratamiento de enfermedades malignas. Se puede emplear de manera aislada, o en combinación con fármacos o hipertermia. La radiología terapéutica ha sido posible gracias al descubrimiento de la radiactividad natural a finales del siglo XIX. En función de la energía del haz de radiación empleado, la radioterapia puede ser superficial (menos de 120 kilovoltios), de ortovoltaje (120 a 1.000 kV), o de megavoltaje (más de 1.000 kV). La radioterapia superficial se emplea en el tratamiento de las enfermedades malignas de la piel, los ojos y otras zonas de la superficie corporal. La radioterapia de ortovoltaje ha sido prácticamente sustituida por la de megavoltaje (cobalto, aceleradores lineales, betatrón y aceleradores de partículas). Con la radioterapia de megavoltaje se consigue una distribución más efectiva y eficiente de la dosis total de radiación que se pretende administrar a los tumores situados en profundidad, preservando al mismo tiempo la piel y los tejidos normales.
La radioterapia puede emplearse como tratamiento único en la mayor parte de los cánceres de la piel, donde es el tratamiento de elección; en algunas fases del cáncer de cérvix, útero, mama y próstata; y en algunas leucemias y linfomas, sobre todo la enfermedad de Hodgkin. En estas situaciones la radioterapia se emplea como tratamiento curativo. Cuando la radioterapia se complementa con la quimioterapia (fármacos anticancerosos) en la llamada terapia combinada, su efecto puede ser curativo o simplemente paliativo (para alivio de los síntomas). La radioterapia también se utiliza antes o después de la exéresis (extracción) quirúrgica de ciertos tumores para aumentar las posibilidades de curación al destruir células tumorales que pudieran haber quedado en los márgenes de la resección. La radioterapia se utiliza con frecuencia para evitar las recurrencias tumorales después de la intervención quirúrgica.

4
FUNDAMENTOS DE LA RADIOTERAPIA
La base de la radioterapia es la superior capacidad de recuperación de los tejidos normales con respecto a los tumores y las células tumorales tras la radiación ionizante. Una dosis de radiación que destruye a las células tumorales sólo produce una lesión transitoria a las células normales vecinas. Cuando la capacidad de recuperación de los tejidos normales frente a una determinada dosis de radiación es similar o inferior a la capacidad de recuperación del tejido canceroso, se dice que el tumor es radiorresistente. Cuando se da esta circunstancia, la radioterapia no constituye un tratamiento adecuado.

5
PROFESIONALES DE LA RADIOLOGÍA
Un radiólogo es un médico que, una vez terminada la carrera de medicina, completa su formación en esa especialidad a lo largo de cuatro o cinco años dedicados al estudio de la radiología diagnóstica o de la radioterapia.
Después de completar su formación como radiólogo puede subespecializarse en otros campos como son la neurorradiología, o la radiología pediátrica, genitourinaria, gastrointestinal, o del aparato locomotor. Estas subespecialidades tienen una duración aproximada de uno o dos años. Así puede dedicarse de manera exclusiva a ese campo de la radiología, o combinar la práctica de la radiología diagnóstica general con la subespecialidad. Los radiólogos pueden trabajar en hospitales públicos o en la práctica privada, o en ambas, o en la enseñanza, la investigación o la administración.
Los radiólogos trabajan en colaboración con físicos, biólogos, y técnicos de radiología. También los técnicos de radiología pueden completar su formación en un área específica, con la acreditación correspondiente. Los técnicos de radiología titulados tienen la cualificación necesaria para realizar determinadas técnicas radiológicas y colaborar en otros procedimientos más complejos, pero siempre bajo la supervisión de un radiólogo. En cualquier caso, un técnico de radiología no tiene la acreditación ni la formación adecuadas para interpretar las exploraciones radiológicas.

Máquina herramienta





Los grandes invento: Máquina herramienta

Taladradora
Este operario controla una enorme taladradora mientras perfora una plancha metálica. La plancha está colocada sobre unos pilares para que la taladradora pueda atravesarla y acabar el agujero. Estas máquinas herramientas de gran tamaño se usan a menudo para fabricar piezas de grandes proyectos de construcción, como barcos.

Máquina herramienta, máquina estacionaria y motorizada que se utiliza para dar forma o modelar materiales sólidos, especialmente metales. El modelado se consigue eliminando parte del material de la pieza o estampándola con una forma determinada. Son la base de la industria moderna y se utilizan directa o indirectamente para fabricar piezas de máquinas y herramientas.
Estas máquinas pueden clasificarse en tres categorías: máquinas desbastadoras convencionales, prensas y máquinas herramientas especiales. Las máquinas desbastadoras convencionales dan forma a la pieza cortando la parte no deseada del material y produciendo virutas. Las prensas utilizan diversos métodos de modelado, como cizallamiento, prensado o estirado. Las máquinas herramientas especiales utilizan la energía luminosa, eléctrica, química o sonora, gases a altas temperaturas y haces de partículas de alta energía para dar forma a materiales especiales y aleaciones utilizadas en la tecnología moderna.
2
HISTORIA
Las máquinas herramientas modernas datan de 1775, año en el que el inventor británico John Wilkinson construyó una taladradora horizontal que permitía conseguir superficies cilíndricas interiores. Hacia 1794 Henry Maudslay desarrolló el primer torno mecánico. Más adelante, Joseph Whitworth aceleró la expansión de las máquinas de Wilkinson y de Maudslay al desarrollar varios instrumentos que permitían una precisión de una millonésima de pulgada (25 millonésimas de milímetro). Sus trabajos tuvieron gran relevancia ya que se necesitaban métodos precisos de medida para la fabricación de productos hechos con piezas intercambiables.
Las primeras pruebas de fabricación de piezas intercambiables se dieron al mismo tiempo en Europa y en Estados Unidos. Estos experimentos se basaban en el uso de calibres de catalogación, con los que las piezas se podían clasificar en dimensiones prácticamente idénticas. El primer sistema de verdadera producción en serie fue creado por el inventor estadounidense Eli Whitney, quien consiguió en 1798 un contrato del gobierno para producir 10.000 mosquetes hechos con piezas intercambiables.
Durante el siglo XIX se alcanzó un grado de precisión relativamente alto en tornos, perfiladoras, cepilladoras, pulidoras, sierras, fresadoras, taladradoras y perforadoras. La utilización de estas máquinas se extendió a todos los países industrializados. Durante los albores del siglo XX aparecieron máquinas herramientas más grandes y de mayor precisión. A partir de 1920 estas máquinas se especializaron y entre 1930 y 1950 se desarrollaron máquinas más potentes y rígidas que aprovechaban los nuevos materiales de corte desarrollados en aquel momento. Estas máquinas especializadas permitían fabricar productos estandarizados con un coste bajo, utilizando mano de obra sin cualificación especial. Sin embargo, carecían de flexibilidad y no se podían emplear para varios productos ni para variaciones en los estándares de fabricación. Para solucionar este problema, los ingenieros se han dedicado durante las últimas décadas a diseñar máquinas herramientas muy versátiles y precisas, controladas por ordenadores o computadoras, que permiten fabricar de forma barata productos con formas complejas. Estas nuevas máquinas se aplican hoy en todos los campos.
3
MÁQUINAS HERRAMIENTAS CONVENCIONALES
Torno, fresadora, cepilladora y perfiladora
Esta selección de máquinas herramientas básicas muestra diversos métodos para dar forma a una pieza. El tipo de tarea suele determinar la herramienta empleada. Por ejemplo, para hacer una agarradera redonda se usaría un torno, mientras que para hacer una tabla de cocina se usaría una cepilladora. Para usar las máquinas herramientas de forma eficaz, la pieza (como en el caso de la perfiladora) o la herramienta (como en el caso de la cepilladora) deben permanecer estacionarias.
© Microsoft Corporation. Reservados todos los derechos.
Entre las máquinas herramientas básicas se encuentran el torno, las perfiladoras, las cepilladoras y las fresadoras. Hay además máquinas taladradoras y perforadoras, pulidoras, sierras y diferentes tipos de máquinas para la deformación del metal.
3.1
Torno
El torno, la máquina giratoria más común y más antigua, sujeta una pieza de metal o de madera y la hace girar mientras un útil de corte da forma al objeto. El útil puede moverse paralela o perpendicularmente a la dirección de giro, para obtener piezas con partes cilíndricas o cónicas, o para cortar acanaladuras. Empleando útiles especiales, un torno se puede utilizar también para obtener superficies lisas, como las producidas por una fresadora, o para taladrar orificios en la pieza.
3.2
Perfiladora
La perfiladora se utiliza para obtener superficies lisas. El útil se desliza sobre una pieza fija y efectúa un primer recorrido para cortar salientes, volviendo a la posición original para realizar el mismo recorrido tras un breve desplazamiento lateral. Esta máquina utiliza un útil de una sola punta y es lenta, porque depende de los recorridos que se efectúen hacia adelante y hacia atrás. Por esta razón no se suele utilizar en las líneas de producción, pero sí en fábricas de herramientas y troqueles o en talleres que fabrican series pequeñas y que requieren mayor flexibilidad.
3.3
Cepilladora
Esta es la mayor de las máquinas herramientas de vaivén. Al contrario que en las perfiladoras, donde el útil se mueve sobre una pieza fija, la cepilladora mueve la pieza sobre un útil fijo. Después de cada vaivén, la pieza se mueve lateralmente para utilizar otra parte de la herramienta. Al igual que la perfiladora, la cepilladora permite hacer cortes verticales, horizontales o diagonales. También puede utilizar varios útiles a la vez para hacer varios cortes simultáneos.
3.4
Fresadora
En las fresadoras, la pieza entra en contacto con un dispositivo circular que cuenta con varios puntos de corte. La pieza se sujeta a un soporte que controla su avance contra el útil de corte. El soporte puede avanzar en tres direcciones: diagonal, horizontal y vertical. En algunos casos también puede girar. Las fresadoras son las máquinas herramientas más versátiles. Permiten obtener superficies curvadas con un alto grado de precisión y un acabado excelente. Los distintos tipos de útiles de corte permiten obtener ángulos, ranuras, engranajes o muescas.
3.5
Taladradoras y perforadoras
Máquinas herramientas comunes
Las máquinas herramientas más comunes preparan las piezas para su posterior ajuste y uso. Las taladradoras, pulidoras, prensas y perforadoras se utilizan mucho en la industria, y ejecutan las tareas con más rapidez y precisión que si las realizara de forma manual un trabajador.

Las máquinas taladradoras y perforadoras se utilizan para abrir orificios, para modificarlos o para adaptarlos a una medida o para rectificar o esmerilar un orificio a fin de conseguir una medida precisa o una superficie lisa.
Hay taladradoras de distintos tamaños y funciones, desde taladradoras portátiles a radiales, pasando por taladradoras de varios cabezales, máquinas automáticas o máquinas de perforación de gran longitud.
La perforación implica el aumento de la anchura de un orificio ya taladrado. Esto se hace con un útil de corte giratorio con una sola punta, colocado en una barra y dirigido contra una pieza fija. Entre las máquinas perforadoras se encuentran las perforadoras de calibre y las fresas de perforación horizontal y vertical.
3.6
Pulidora
El pulido es la eliminación de metal con un disco abrasivo giratorio que trabaja como una fresadora de corte. El disco está compuesto por un gran número de granos de material abrasivo conglomerado, en que cada grano actúa como un útil de corte minúsculo. Con este proceso se consiguen superficies muy suaves y precisas. Dado que sólo se elimina una parte pequeña del material con cada pasada del disco, las pulidoras requieren una regulación muy precisa. La presión del disco sobre la pieza se selecciona con mucha exactitud, por lo que pueden tratarse de esta forma materiales frágiles que no se pueden procesar con otros dispositivos convencionales.
3.7
Sierras
Sierras circulares
Las sierras circulares son, probablemente, las sierras mecánicas más utilizadas. En la imagen, una sierra de este tipo corta un tronco antes de ser transportado a los aserraderos.

Las sierras mecánicas más utilizadas se pueden clasificar en tres categorías, según el tipo de movimiento que se emplea para realizar el corte: de vaivén, circulares o de banda. Las sierras suelen tener un banco o marco, un tornillo para sujetar la pieza, un mecanismo de avance y una hoja de corte.
3.8
Útiles y fluidos para el corte
Dado que los procesos de corte implican tensiones y fricciones locales y un considerable desprendimiento de calor, los materiales empleados en los útiles de corte deben ser duros, tenaces y resistentes al desgaste a altas temperaturas. Hay materiales que cumplen estos requisitos en mayor o menor grado, como los aceros al carbono (los que contienen un 1 o 1,2% de carbono), los aceros de corte rápido (aleaciones de hierro con volframio, cromo, vanadio o carbono), el carburo de volframio y los diamantes. También tienen estas propiedades los materiales cerámicos y el óxido de aluminio.
En muchas operaciones de corte se utilizan fluidos para refrigerar y lubricar. La refrigeración alarga la vida de los útiles y ayuda a fijar el tamaño de la pieza terminada. La lubricación reduce la fricción, limitando el calor generado y la energía necesaria para realizar el corte. Los fluidos para corte son de tres tipos: disoluciones acuosas, aceites químicamente inactivos y fluidos sintéticos.
3.9
Prensas
Las prensas dan forma a las piezas sin eliminar material, o sea, sin producir viruta. Una prensa consta de un marco que sostiene una bancada fija, un pistón, una fuente de energía y un mecanismo que mueve el pistón en paralelo o en ángulo recto con respecto a la bancada. Las prensas cuentan con troqueles y punzones que permiten deformar, perforar y cizallar las piezas. Estas máquinas pueden producir piezas a gran velocidad porque el tiempo que requiere cada proceso es sólo el tiempo de desplazamiento del pistón.
4
MÁQUINAS HERRAMIENTAS NO CONVENCIONALES
Entre las máquinas herramientas no convencionales se encuentran las máquinas de arco de plasma, las de rayo láser, las de descarga eléctrica y las electroquímicas, ultrasónicas y de haz de electrones. Estas máquinas fueron desarrolladas para dar forma a aleaciones de gran dureza utilizadas en la industria pesada y en aplicaciones aerospaciales. También se emplean para dar forma y grabar materiales muy delgados que se utilizan para fabricar componentes electrónicos como los microprocesadores.
4.1
Arco de plasma
La mecanización con arco de plasma utiliza un chorro de gas a alta temperatura y gran velocidad para fundir y eliminar el material. El arco de plasma se emplea para cortar materiales difíciles de seccionar con otros métodos, como el acero inoxidable y las aleaciones de aluminio.
4.2
Láser
Soldador láser
Un láser puede vaporizar metales a temperaturas superiores a los 5.500 °C y soldar piezas como muestra la fotografía. El láser es particularmente útil porque puede efectuar agujeros o cortes en piezas metálicas sin deformarlas.

La mecanización por rayo láser se consigue dirigiendo con mucha exactitud un rayo láser, para vaporizar el material que se desea eliminar. Este método es muy adecuado para hacer orificios con gran precisión. También puede perforar metales refractarios y cerámicos y piezas muy finas sin abarquillarlas. Otra aplicación es la fabricación de alambres muy finos.
4.3
Descarga eléctrica
Este tipo de mecanización, conocida también como erosión por chispa, utiliza la energía eléctrica para eliminar material de la pieza sin necesidad de tocarla. Se aplica una corriente eléctrica intensa entre la punta del útil y la pieza, haciendo que salten chispas que vaporizan puntos pequeños de la pieza. Como no hay ninguna acción mecánica, se pueden realizar operaciones delicadas con piezas frágiles. Este método produce formas que no se pueden conseguir con procesos de mecanizado convencionales.

4.4
Electroquímica
La mecanización electroquímica emplea también la energía eléctrica para eliminar material. Se crea una celda electrolítica, utilizando el útil como cátodo y la pieza como ánodo y se aplica una corriente de intensidad elevada pero de bajo voltaje para disolver el metal y eliminarlo. La pieza debe ser de un material conductor. Con este tipo de mecanización son posibles muchas operaciones, como grabar, marcar, perforar y fresar.

4.5
Ultrasónica
La mecanización ultrasónica utiliza vibraciones de alta frecuencia y baja amplitud para crear orificios y otras cavidades. Se fabrica un útil relativamente blando con la forma deseada y se aplica contra la pieza con una vibración, utilizando un material abrasivo y agua. La fricción de las partículas abrasivas corta poco a poco la pieza. Este proceso permite mecanizar con facilidad aceros endurecidos, carburos, rubíes, cuarzo, diamantes y vidrio.

4.6
Haz de electrones
Este método de mecanización utiliza electrones acelerados a una velocidad equivalente a tres cuartas partes de la velocidad de la luz. El proceso se realiza en una cámara de vacío para reducir la expansión del haz de electrones a causa de los gases de la atmósfera. La corriente de electrones choca contra un área de la pieza delimitada con precisión. La energía cinética de los electrones se convierte en calor al chocar éstos contra la pieza, lo que hace que el material que se quiere eliminar se funda y se evapore, creando orificios o cortes. Los equipos de haz de electrones se suelen utilizar en electrónica para grabar circuitos de microprocesadores.

Entradas populares

Me gusta

Seguidores