Monitor digital




Monitor digital, en informática, monitor de vídeo capaz de presentar sólo un número fijo de colores o tonalidades de gris. Algunos ejemplos de monitores digitales son el monocromo, el monitor para gráficos en color y el monitor para colores mejorados de IBM. En el caso de un monitor monocromo, la tarjeta gráfica envía dos informaciones por cada punto; la primera dice si el punto está iluminado o no y la segunda si la señal es intensa o no. Los monitores color digitales reciben de la tarjeta gráfica cuatro informaciones por cada punto; la primera indica si el punto es rojo o no rojo, la segunda, si es verde o no verde, la tercera si es azul o no azul y la cuarta, si es intenso o no intenso. Las tarjetas gráficas compatibles con estos monitores son las MDA, CGA y EGA.
También representa a los monitores que no requieren de convertidores digitales analógicos para representar en pantalla la información de la imagen recibida desde el controlador gráfico. Véase también Monitor analógico; Tubo de rayos catódicos; Digital.

Internet




Internet, interconexión de redes informáticas que permite a los ordenadores o computadoras conectadas comunicarse directamente, es decir, cada ordenador de la red puede conectarse a cualquier otro ordenador de la red. El término suele referirse a una interconexión en particular, de carácter planetario y abierto al público, que conecta redes informáticas de organismos oficiales, educativos y empresariales. También existen sistemas de redes más pequeños llamados intranets, generalmente para el uso de una única organización, que obedecen a la misma filosofía de interconexión.
La tecnología de Internet es una precursora de la llamada “superautopista de la información”, un objetivo teórico de las comunicaciones informáticas que permitiría proporcionar a colegios, bibliotecas, empresas y hogares acceso universal a una información de calidad que eduque, informe y entretenga. A finales de 1998 estaban conectados a Internet unos 148 millones de ordenadores, y la cifra sigue en aumento.
2 CÓMO FUNCIONA INTERNET
Internet es un conjunto de redes locales conectadas entre sí a través de una computadora especial por cada red, conocida como gateway o puerta. Las interconexiones entre gateways se efectúan a través de diversas vías de comunicación, entre las que figuran líneas telefónicas, fibras ópticas y enlaces por radio. Pueden añadirse redes adicionales conectando nuevas puertas. La información que se debe enviar a una máquina remota se etiqueta con la dirección computerizada de dicha máquina.
Los distintos tipos de servicio proporcionados por Internet utilizan diferentes formatos de dirección (véase Dirección de Internet). Uno de los formatos se conoce como decimal con puntos, por ejemplo 123.45.67.89. Otro formato describe el nombre del ordenador de destino y otras informaciones para el enrutamiento, por ejemplo “mayor.dia.fi.upm.es”. Las redes situadas fuera de Estados Unidos utilizan sufijos que indican el país, por ejemplo (.es) para España o (.ar) para Argentina. Dentro de Estados Unidos, el sufijo anterior especifica el tipo de organización a que pertenece la red informática en cuestión, que por ejemplo puede ser una institución educativa (.edu), un centro militar (.mil), una oficina del Gobierno (.gov) o una organización sin ánimo de lucro (.org).
Una vez direccionada, la información sale de su red de origen a través de la puerta. De allí es encaminada de puerta en puerta hasta que llega a la red local que contiene la máquina de destino. Internet no tiene un control central, es decir, no existe ningún ordenador individual que dirija el flujo de información. Esto diferencia a Internet y a los sistemas de redes semejantes de otros tipos de servicios informáticos de red como CompuServe, America Online o Microsoft Network.
3 EL PROTOCOLO DE INTERNET
El Protocolo de Internet (IP) es el soporte lógico básico empleado para controlar este sistema de redes. Este protocolo especifica cómo las computadoras de puerta encaminan la información desde el ordenador emisor hasta el ordenador receptor. Otro protocolo denominado Protocolo de Control de Transmisión (TCP) comprueba si la información ha llegado al ordenador de destino y, en caso contrario, hace que se vuelva a enviar. La utilización de protocolos TCP/IP es un elemento común en las redes Internet e intranet.
4 SERVICIOS DE INTERNET
Los sistemas de redes como Internet permiten intercambiar información entre computadoras, y ya se han creado numerosos servicios que aprovechan esta función. Entre ellos figuran los siguientes: conectarse a un ordenador desde otro lugar (telnet); transferir ficheros entre una computadora local y una computadora remota (protocolo de transferencia de ficheros, o FTP) y leer e interpretar ficheros de ordenadores remotos (gopher). El servicio de Internet más reciente e importante es el protocolo de transferencia de hipertexto (http), un descendiente del servicio de gopher. El http puede leer e interpretar ficheros de una máquina remota: no sólo texto sino imágenes, sonidos o secuencias de vídeo. El http es el protocolo de transferencia de información que forma la base de la colección de información distribuida denominada World Wide Web. Internet permite también intercambiar mensajes de correo electrónico (e-mail); acceso a grupos de noticias y foros de debate (news), y conversaciones en tiempo real (chat, IRC), entre otros servicios.
5 LA WORLD WIDE WEB
World Wide Web (también conocida como Web o WWW) es una colección de ficheros, que incluyen información en forma de textos, gráficos, sonidos y vídeos, además de vínculos con otros ficheros. Los ficheros son identificados por un localizador universal de recursos (URL, siglas en inglés) que especifica el protocolo de transferencia, la dirección de Internet de la máquina y el nombre del fichero. Por ejemplo, un URL podría ser http://www.encarta.es/msn.com. Los programas informáticos denominados exploradores —como Navigator, de Netscape, o Internet Explorer, de Microsoft— utilizan el protocolo http para recuperar esos ficheros. Continuamente se desarrollan nuevos tipos de ficheros para la WWW, que contienen por ejemplo animación o realidad virtual (VRML). Hasta hace poco había que programar especialmente los lectores para manejar cada nuevo tipo de archivo. Los nuevos lenguajes de programación (como JAVA, de Sun Microsystems) permiten que los exploradores puedan cargar programas de ayuda capaces de manipular esos nuevos tipos de información.
La gran cantidad de información vertida a la red ha dado lugar a la aparición de buscadores, páginas especializadas en hacer índices de los contenidos que facilitan localizaciones específicas. Algunos de los más populares son Yahoo, Google, Altavista o Lycos. También los hay específicos para páginas en español como Ozú u Olé.
6 HISTORIA
Los orígenes de Internet hay que buscarlos en un proyecto del Departamento de Defensa estadounidense que pretendía obtener una red de comunicaciones segura que se pudiese mantener aunque fallase alguno de sus nodos. Así nació ARPA, una red informática que conectaba ordenadores localizados en sitios dispersos y que operaban sobre distintos sistemas operativos, de tal manera que cada ordenador se podía conectar a todos los demás. Los protocolos que permitían tal interconexión fueron desarrollados en 1973 por el informático estadounidense Vinton Cerf y el ingeniero estadounidense Robert Kahn, y son los conocidos Protocolo de Internet (IP) y Protocolo de Control de Transmisión (TCP). Fuera ya del ámbito estrictamente militar, esta Internet incipiente (llamada Arpanet) tuvo un gran desarrollo en Estados Unidos, conectando gran cantidad de universidades y centros de investigación. A la red se unieron nodos de Europa y del resto del mundo, formando lo que se conoce como la gran telaraña mundial (World Wide Web). En 1990 Arpanet dejó de existir.
A finales de 1989, el informático británico Timothy Berners-Lee desarrolla la World Wide Web para la Organización Europea para la Investigación Nuclear, más conocida como CERN. Su objetivo era crear una red que permitiese el intercambio de información entre los investigadores que participaban en proyectos vinculados a esta organización. El objetivo se logró utilizando archivos que contenían la información en forma de textos, gráficos, sonido y vídeos, además de vínculos con otros archivos. Este sistema de hipertexto fue el que propició el extraordinario desarrollo de Internet como medio a través del cual circula gran cantidad de información por la que se puede navegar utilizando los hipervínculos.
Además de la utilización académica e institucional que tuvo en sus orígenes, hoy se emplea Internet con fines comerciales. Las distintas empresas no sólo la utilizan como escaparate en el que se dan a conocer ellas mismas y sus productos, sino que, a través de Internet, se realizan ya múltiples operaciones comerciales. Especialmente la banca tiene en la red uno de sus puntos estratégicos de actuación para el futuro próximo.
En estos momentos se está desarrollando lo que se conoce como Internet2, una redefinición de Internet que tiene como objetivo principal lograr el intercambio de datos multimedia en tiempo real. El avance ha de venir de la mano de la mejora en las líneas de comunicación, con el ancho de banda como principal aliado.
7 IMPACTO SOCIAL
Aunque la interacción informática todavía está en su infancia, ha cambiado espectacularmente el mundo en que vivimos, eliminando las barreras del tiempo y la distancia y permitiendo a la gente compartir información y trabajar en colaboración. El avance hacia la “superautopista de la información” continuará a un ritmo cada vez más rápido. El contenido disponible crecerá rápidamente, lo que hará más fácil que se pueda encontrar cualquier información en Internet. Las nuevas aplicaciones permiten realizar transacciones económicas de forma segura y proporcionan nuevas oportunidades para el comercio. Las nuevas tecnologías aumentarán la velocidad de transferencia de información, lo que hará posible la transferencia directa de “ocio a la carta”. Es posible que las actuales transmisiones de televisión generales se vean sustituidas por transmisiones específicas en las que cada hogar reciba una señal especialmente diseñada para los gustos de sus miembros, para que puedan ver lo que quieran en el momento que deseen.
El crecimiento explosivo de Internet ha hecho que se planteen importantes cuestiones relativas a la censura. El aumento de las páginas Web que contenían textos y gráficos en los que se denigraba a una minoría, se fomentaba el racismo o se exponía material pornográfico llevó a pedir que los suministradores de Internet cumplieran voluntariamente unos determinados criterios.
La censura en Internet plantea muchas cuestiones. La mayoría de los servicios de la red no pueden vigilar y controlar constantemente lo que los usuarios exponen en Internet a través de sus servidores. A la hora de tratar con información procedente de otros países surgen problemas legales; incluso aunque fuera posible un control supranacional, habría que determinar unos criterios mundiales de comportamiento y ética.

Monitor analógico




Monitor analógico, en informática, un monitor visual capaz de presentar una gama continua (un número infinito) de colores o tonalidades de gris, a diferencia de un monitor digital, que sólo es capaz de presentar un número finito de colores. El número de colores que puede representar viene limitado sólo por la tarjeta gráfica que se esté utilizando. A diferencia de los monitores digitales, estos monitores reciben de la tarjeta gráfica una señal analógica con valores de tensión variable entre 0 y 0,7 voltios; la tensión puede tener cualquier valor entre estos límites, de ahí que puedan representar un número infinito de colores. Tarjetas compatibles con estos monitores son las VGA, SuperVGA y XGA.

Máser




Máser, acrónimo de Microwave Amplification by Stimulated Emission of Radiation, amplificación de microondas por emisión estimulada de radiación. Es un dispositivo que amplifica o genera microondas y ondas de radio. Si produce radiación en el rango del espectro visible se llama láser.
2 PRINCIPIOS DE SU FUNCIONAMIENTO
Como el láser, el máser amplifica una radiación por emisión estimulada o inducida. Esto ocurre cuando un fotón obliga a un átomo o molécula a descender a un nivel de energía menor al emitir éste un fotón de la misma frecuencia que el fotón incidente. El fotón emitido viaja en la misma dirección y en fase con el fotón incidente, que no se absorbe durante la interacción. La amplitud de las dos ondas se suma, y tiene lugar la amplificación de la señal incidente. El máser aprovecha este principio y lo aplica a cristales o moléculas que corresponden a los niveles energéticos de las microondas y las frecuencias de radio.
3 TIPOS DE MÁSER
El primer oscilador máser se inventó en 1954, y utilizaba la frecuencia de la molécula de amoníaco. Esta frecuencia corresponde a la energía del fotón emitido cuando el átomo de nitrógeno se desplaza de un lado al otro del triángulo formado por los tres átomos de hidrógeno de la molécula de amoníaco. El máser de hidrógeno utiliza la frecuencia correspondiente a la del fotón liberado cuando el espín del protón del átomo de hidrógeno se invierte con respecto al espín del electrón. Los máseres paramagnéticos aprovechan las transiciones energéticas que corresponden a la orientación de los momentos magnéticos de los iones paramagnéticos de sustancias cristalinas colocadas en un campo magnético externo. Se pueden obtener diferentes frecuencias variando el campo magnético, lo que permite sintonizar este tipo de máser desde frecuencias inferiores a un megahercio hasta varios cientos de megahercios.
4 APLICACIONES
Debido a la gran estabilidad de las frecuencias generadas, los máseres se utilizan como reguladores de tiempo en relojes atómicos. También se utilizan como amplificadores de frecuencias de radio de bajo nivel de ruido en comunicaciones por satélite y en radioastronomía.

El Láser




Láser, dispositivo de amplificación de luz por emisión estimulada de radiación. Los láseres son aparatos que amplifican la luz y producen haces de luz coherente; su frecuencia va desde el infrarrojo hasta los rayos X. Un haz de luz es coherente cuando sus ondas, o fotones, se propagan de forma acompasada, o en fase (véase Interferencia). Esto hace que la luz láser pueda ser extremadamente intensa, muy direccional, y con una gran pureza de color (frecuencia). Los máseres son dispositivos similares para microondas.
2 PRINCIPIOS DE FUNCIONAMIENTO
Los láseres obligan a los átomos a almacenar luz y emitirla en forma coherente. Primero, los electrones de los átomos del láser son bombeados hasta un estado excitado por una fuente de energía. Después, se los ‘estimula’ mediante fotones externos para que emitan la energía almacenada en forma de fotones, mediante un proceso conocido como emisión estimulada. Los fotones emitidos tienen una frecuencia que depende de los átomos en cuestión y se desplazan en fase con los fotones que los estimulan. Los fotones emitidos chocan a su vez con otros átomos excitados y liberan nuevos fotones. La luz se amplifica a medida que los fotones se desplazan hacia atrás y hacia adelante entre dos espejos paralelos desencadenando nuevas emisiones estimuladas. Al mismo tiempo, la luz láser, intensa, direccional y monocromática, se ‘filtra’ por uno de los espejos, que es sólo parcialmente reflectante.
La emisión estimulada, el proceso en que se basa el láser, fue descrita por primera vez por Albert Einstein en 1917. En 1958, los físicos estadounidenses Arthur Schawlow y Charles Hard Townes describieron a grandes rasgos los principios de funcionamiento del láser en su solicitud de patente. Obtuvieron la patente, pero posteriormente fue impugnada por el físico e ingeniero estadounidense Gordon Gould. En 1960, el físico estadounidense Theodore Maiman observó el primer proceso láser en un cristal de rubí. Un año más tarde, el físico estadounidense nacido en Irán Alí Javan construyó un láser de helio-neón. En 1966, el físico estadounidense Peter Sorokin construyó un láser de líquido. En 1977, el Tribunal de Patentes de Estados Unidos confirmó una de las reivindicaciones de Gould en relación con los principios de funcionamiento del láser.
3 TIPOS DE LÁSER
Según el medio que emplean, los láseres suelen denominarse de estado sólido, de gas, de semiconductores o líquidos.
3.1 Láseres de estado sólido
Los medios más comunes en los láseres de estado sólido son varillas de cristal de rubí o vidrios y cristales con impurezas de neodimio. Los extremos de la varilla se tallan de forma que sus superficies sean paralelas y se recubren con una capa reflectante no metálica. Los láseres de estado sólido proporcionan las emisiones de mayor energía. Normalmente funcionan por pulsos, generando un destello de luz durante un tiempo breve. Se han logrado pulsos de sólo 1,2 × 10-14 segundos, útiles para estudiar fenómenos físicos de duración muy corta. El bombeo se realiza mediante luz de tubos de destello de xenón, lámparas de arco o lámparas de vapor metálico. La gama de frecuencias se ha ampliado desde el infrarrojo (IR) hasta el ultravioleta (UV) al multiplicar la frecuencia original del láser con cristales de dihidrogenofosfato de potasio, y se han obtenido longitudes de onda aún más cortas, correspondientes a rayos X, enfocando el haz de un láser sobre blancos de itrio.
3.2 Láseres de gas
El medio de un láser de gas puede ser un gas puro, una mezcla de gases o incluso un vapor metálico, y suele estar contenido en un tubo cilíndrico de vidrio o cuarzo. En el exterior de los extremos del tubo se sitúan dos espejos para formar la cavidad del láser. Los láseres de gas son bombeados por luz ultravioleta, haces de electrones, corrientes eléctricas o reacciones químicas. El láser de helio-neón resalta por su elevada estabilidad de frecuencia, pureza de color y mínima dispersión del haz. Los láseres de dióxido de carbono son muy eficientes, y son los láseres de onda continua (CW, siglas en inglés) más potentes.
3.3 Láseres de semiconductores
Los láseres de semiconductores son los más compactos, y suelen estar formados por una unión entre capas de semiconductores con diferentes propiedades de conducción eléctrica. La cavidad del láser se mantiene confinada en la zona de la unión mediante dos límites reflectantes. El arseniuro de galio es el semiconductor más usado. Los láseres de semiconductores se bombean mediante la aplicación directa de corriente eléctrica a la unión, y pueden funcionar en modo CW con una eficiencia superior al 50%. Se ha diseñado un método que permite un uso de la energía aún más eficiente. Implica el montaje vertical de láseres minúsculos, con una densidad superior al millón por centímetro cuadrado. Entre los usos más comunes de los láseres de semiconductores están los reproductores de discos compactos (véase Grabación de sonido y reproducción) y las impresoras láser.
3.4 Láseres líquidos
Los medios más comunes en los láseres líquidos son tintes inorgánicos contenidos en recipientes de vidrio. Se bombean con lámparas de destello intensas —cuando operan por pulsos— o por un láser de gas —cuando funcionan en modo CW. La frecuencia de un láser de colorante sintonizable puede modificarse mediante un prisma situado en la cavidad del láser.
3.5 Láseres de electrones libres
En 1977 se desarrollaron por primera vez láseres que emplean para producir radiación haces de electrones, no ligados a átomos, que circulan a lo largo de las líneas de un campo magnético; actualmente están adquiriendo importancia como instrumentos de investigación. Su frecuencia es regulable, como ocurre con los láseres de colorante, y en teoría un pequeño número podría cubrir todo el espectro, desde el infrarrojo hasta los rayos X. Con los láseres de electrones libres debería generarse radiación de muy alta potencia que actualmente resulta demasiado costosa de producir. Véase Radiación de sincrotrón.
4 APLICACIONES DEL LÁSER
Los posibles usos del láser son casi ilimitados. El láser se ha convertido en una herramienta valiosa en la industria, la investigación científica, la tecnología militar o el arte.
4.1 Industria
Es posible enfocar sobre un punto pequeño un haz de láser potente, con lo que se logra una enorme densidad de energía. Los haces enfocados pueden calentar, fundir o vaporizar materiales de forma precisa. Por ejemplo, los láseres se usan para taladrar diamantes, modelar máquinas herramientas, recortar componentes microelectrónicos, calentar chips semiconductores, cortar patrones de moda, sintetizar nuevos materiales o intentar inducir la fusión nuclear controlada (véase Energía nuclear). El potente y breve pulso producido por un láser también hace posibles fotografías de alta velocidad con un tiempo de exposición de algunas billonésimas de segundo. En la construcción de carreteras y edificios se utilizan láseres para alinear las estructuras.
4.2 Investigación científica
Los láseres se emplean para detectar los movimientos de la corteza terrestre y para efectuar medidas geodésicas. También son los detectores más eficaces de ciertos tipos de contaminación atmosférica. Los láseres se han empleado igualmente para determinar con precisión la distancia entre la Tierra y la Luna y en experimentos de relatividad. Actualmente se desarrollan conmutadores muy rápidos activados por láser para su uso en aceleradores de partículas, y se han diseñado técnicas que emplean haces de láser para atrapar un número reducido de átomos en un vacío con el fin de estudiar sus espectros con una precisión muy elevada. Como la luz del láser es muy direccional y monocromática, resulta fácil detectar cantidades muy pequeñas de luz dispersa o modificaciones en la frecuencia provocadas por materia. Midiendo estos cambios, los científicos han conseguido estudiar las estructuras moleculares. Los láseres han hecho que se pueda determinar la velocidad de la luz con una precisión sin precedentes; también permiten inducir reacciones químicas de forma selectiva y detectar la existencia de trazas de sustancias en una muestra. Véase Análisis químico; Fotoquímica.
4.3 Comunicaciones
La luz de un láser puede viajar largas distancias por el espacio exterior con una pequeña reducción de la intensidad de la señal. Debido a su alta frecuencia, la luz láser puede transportar, por ejemplo, 1.000 veces más canales de televisión de lo que transportan las microondas. Por ello, los láseres resultan ideales para las comunicaciones espaciales. Se han desarrollado fibras ópticas de baja pérdida que transmiten luz láser para la comunicación terrestre, en sistemas telefónicos y redes de computadoras. También se han empleado técnicas láser para registrar información con una densidad muy alta. Por ejemplo, la luz láser simplifica el registro de un holograma, a partir del cual puede reconstruirse una imagen tridimensional mediante un rayo láser.
4.4 Medicina
Con haces intensos y estrechos de luz láser es posible cortar y cauterizar ciertos tejidos en una fracción de segundo sin dañar al tejido sano circundante. El láser se ha empleado para ‘soldar’ la retina, perforar el cráneo, reparar lesiones y cauterizar vasos sanguíneos. También se han desarrollado técnicas láser para realizar pruebas de laboratorio en muestras biológicas pequeñas.
4.5 Tecnología militar
Los sistemas de guiado por láser para misiles, aviones y satélites son muy comunes. La capacidad de los láseres de colorante sintonizables para excitar de forma selectiva un átomo o molécula puede llevar a métodos más eficientes para la separación de isótopos en la fabricación de armas nucleares.
5 MEDIDAS DE SEGURIDAD
El principal peligro al trabajar con láseres es el daño ocular, ya que el ojo concentra la luz láser igual que cualquier otro tipo de luz. Por eso, el haz del láser no debe incidir sobre los ojos directamente ni por reflexión. Un láser debe ser manejado por personal experto equipado con gafas o anteojos de seguridad.
6 LÁSER ATÓMICO
En enero de 1997, un equipo de físicos estadounidenses anunció la creación del primer láser compuesto de materia en vez de luz. Del mismo modo que en un láser de luz cada fotón viaja en la misma dirección y con la misma longitud de onda que cualquier otro fotón, en un láser atómico cada átomo se comporta de la misma manera que cualquier otro átomo, formando una “onda de materia” coherente.
Los científicos confían en las numerosas e importantes aplicaciones potenciales de los láseres atómicos, aunque presenten algunas desventajas prácticas frente a los láseres de luz debido a que los átomos están sujetos a fuerzas gravitatorias e interaccionan unos con otros de forma distinta a como lo hacen los fotones.

Entradas populares

Me gusta

Seguidores