Láser, dispositivo de amplificación de luz por emisión estimulada de radiación. Los láseres son aparatos que amplifican la luz y producen haces de luz coherente; su frecuencia va desde el infrarrojo hasta los rayos X. Un haz de luz es coherente cuando sus ondas, o fotones, se propagan de forma acompasada, o en fase (véase Interferencia). Esto hace que la luz láser pueda ser extremadamente intensa, muy direccional, y con una gran pureza de color (frecuencia). Los máseres son dispositivos similares para microondas. 2 PRINCIPIOS DE FUNCIONAMIENTO
Los láseres obligan a los átomos a almacenar luz y emitirla en forma coherente. Primero, los electrones de los átomos del láser son bombeados hasta un estado excitado por una fuente de energía. Después, se los ‘estimula’ mediante fotones externos para que emitan la energía almacenada en forma de fotones, mediante un proceso conocido como emisión estimulada. Los fotones emitidos tienen una frecuencia que depende de los átomos en cuestión y se desplazan en fase con los fotones que los estimulan. Los fotones emitidos chocan a su vez con otros átomos excitados y liberan nuevos fotones. La luz se amplifica a medida que los fotones se desplazan hacia atrás y hacia adelante entre dos espejos paralelos desencadenando nuevas emisiones estimuladas. Al mismo tiempo, la luz láser, intensa, direccional y monocromática, se ‘filtra’ por uno de los espejos, que es sólo parcialmente reflectante.
La emisión estimulada, el proceso en que se basa el láser, fue descrita por primera vez por Albert Einstein en 1917. En 1958, los físicos estadounidenses Arthur Schawlow y Charles Hard Townes describieron a grandes rasgos los principios de funcionamiento del láser en su solicitud de patente. Obtuvieron la patente, pero posteriormente fue impugnada por el físico e ingeniero estadounidense Gordon Gould. En 1960, el físico estadounidense Theodore Maiman observó el primer proceso láser en un cristal de rubí. Un año más tarde, el físico estadounidense nacido en Irán Alí Javan construyó un láser de helio-neón. En 1966, el físico estadounidense Peter Sorokin construyó un láser de líquido. En 1977, el Tribunal de Patentes de Estados Unidos confirmó una de las reivindicaciones de Gould en relación con los principios de funcionamiento del láser.
3 TIPOS DE LÁSER
Según el medio que emplean, los láseres suelen denominarse de estado sólido, de gas, de semiconductores o líquidos.
3.1 Láseres de estado sólido
Los medios más comunes en los láseres de estado sólido son varillas de cristal de rubí o vidrios y cristales con impurezas de neodimio. Los extremos de la varilla se tallan de forma que sus superficies sean paralelas y se recubren con una capa reflectante no metálica. Los láseres de estado sólido proporcionan las emisiones de mayor energía. Normalmente funcionan por pulsos, generando un destello de luz durante un tiempo breve. Se han logrado pulsos de sólo 1,2 × 10-14 segundos, útiles para estudiar fenómenos físicos de duración muy corta. El bombeo se realiza mediante luz de tubos de destello de xenón, lámparas de arco o lámparas de vapor metálico. La gama de frecuencias se ha ampliado desde el infrarrojo (IR) hasta el ultravioleta (UV) al multiplicar la frecuencia original del láser con cristales de dihidrogenofosfato de potasio, y se han obtenido longitudes de onda aún más cortas, correspondientes a rayos X, enfocando el haz de un láser sobre blancos de itrio.
3.2 Láseres de gas
El medio de un láser de gas puede ser un gas puro, una mezcla de gases o incluso un vapor metálico, y suele estar contenido en un tubo cilíndrico de vidrio o cuarzo. En el exterior de los extremos del tubo se sitúan dos espejos para formar la cavidad del láser. Los láseres de gas son bombeados por luz ultravioleta, haces de electrones, corrientes eléctricas o reacciones químicas. El láser de helio-neón resalta por su elevada estabilidad de frecuencia, pureza de color y mínima dispersión del haz. Los láseres de dióxido de carbono son muy eficientes, y son los láseres de onda continua (CW, siglas en inglés) más potentes.
3.3 Láseres de semiconductores
Los láseres de semiconductores son los más compactos, y suelen estar formados por una unión entre capas de semiconductores con diferentes propiedades de conducción eléctrica. La cavidad del láser se mantiene confinada en la zona de la unión mediante dos límites reflectantes. El arseniuro de galio es el semiconductor más usado. Los láseres de semiconductores se bombean mediante la aplicación directa de corriente eléctrica a la unión, y pueden funcionar en modo CW con una eficiencia superior al 50%. Se ha diseñado un método que permite un uso de la energía aún más eficiente. Implica el montaje vertical de láseres minúsculos, con una densidad superior al millón por centímetro cuadrado. Entre los usos más comunes de los láseres de semiconductores están los reproductores de discos compactos (véase Grabación de sonido y reproducción) y las impresoras láser.
3.4 Láseres líquidos
Los medios más comunes en los láseres líquidos son tintes inorgánicos contenidos en recipientes de vidrio. Se bombean con lámparas de destello intensas —cuando operan por pulsos— o por un láser de gas —cuando funcionan en modo CW. La frecuencia de un láser de colorante sintonizable puede modificarse mediante un prisma situado en la cavidad del láser.
3.5 Láseres de electrones libres
En 1977 se desarrollaron por primera vez láseres que emplean para producir radiación haces de electrones, no ligados a átomos, que circulan a lo largo de las líneas de un campo magnético; actualmente están adquiriendo importancia como instrumentos de investigación. Su frecuencia es regulable, como ocurre con los láseres de colorante, y en teoría un pequeño número podría cubrir todo el espectro, desde el infrarrojo hasta los rayos X. Con los láseres de electrones libres debería generarse radiación de muy alta potencia que actualmente resulta demasiado costosa de producir. Véase Radiación de sincrotrón.
4 APLICACIONES DEL LÁSER
Los posibles usos del láser son casi ilimitados. El láser se ha convertido en una herramienta valiosa en la industria, la investigación científica, la tecnología militar o el arte.
4.1 Industria
Es posible enfocar sobre un punto pequeño un haz de láser potente, con lo que se logra una enorme densidad de energía. Los haces enfocados pueden calentar, fundir o vaporizar materiales de forma precisa. Por ejemplo, los láseres se usan para taladrar diamantes, modelar máquinas herramientas, recortar componentes microelectrónicos, calentar chips semiconductores, cortar patrones de moda, sintetizar nuevos materiales o intentar inducir la fusión nuclear controlada (véase Energía nuclear). El potente y breve pulso producido por un láser también hace posibles fotografías de alta velocidad con un tiempo de exposición de algunas billonésimas de segundo. En la construcción de carreteras y edificios se utilizan láseres para alinear las estructuras.
4.2 Investigación científica
Los láseres se emplean para detectar los movimientos de la corteza terrestre y para efectuar medidas geodésicas. También son los detectores más eficaces de ciertos tipos de contaminación atmosférica. Los láseres se han empleado igualmente para determinar con precisión la distancia entre la Tierra y la Luna y en experimentos de relatividad. Actualmente se desarrollan conmutadores muy rápidos activados por láser para su uso en aceleradores de partículas, y se han diseñado técnicas que emplean haces de láser para atrapar un número reducido de átomos en un vacío con el fin de estudiar sus espectros con una precisión muy elevada. Como la luz del láser es muy direccional y monocromática, resulta fácil detectar cantidades muy pequeñas de luz dispersa o modificaciones en la frecuencia provocadas por materia. Midiendo estos cambios, los científicos han conseguido estudiar las estructuras moleculares. Los láseres han hecho que se pueda determinar la velocidad de la luz con una precisión sin precedentes; también permiten inducir reacciones químicas de forma selectiva y detectar la existencia de trazas de sustancias en una muestra. Véase Análisis químico; Fotoquímica.
4.3 Comunicaciones
La luz de un láser puede viajar largas distancias por el espacio exterior con una pequeña reducción de la intensidad de la señal. Debido a su alta frecuencia, la luz láser puede transportar, por ejemplo, 1.000 veces más canales de televisión de lo que transportan las microondas. Por ello, los láseres resultan ideales para las comunicaciones espaciales. Se han desarrollado fibras ópticas de baja pérdida que transmiten luz láser para la comunicación terrestre, en sistemas telefónicos y redes de computadoras. También se han empleado técnicas láser para registrar información con una densidad muy alta. Por ejemplo, la luz láser simplifica el registro de un holograma, a partir del cual puede reconstruirse una imagen tridimensional mediante un rayo láser.
4.4 Medicina
Con haces intensos y estrechos de luz láser es posible cortar y cauterizar ciertos tejidos en una fracción de segundo sin dañar al tejido sano circundante. El láser se ha empleado para ‘soldar’ la retina, perforar el cráneo, reparar lesiones y cauterizar vasos sanguíneos. También se han desarrollado técnicas láser para realizar pruebas de laboratorio en muestras biológicas pequeñas.
4.5 Tecnología militar
Los sistemas de guiado por láser para misiles, aviones y satélites son muy comunes. La capacidad de los láseres de colorante sintonizables para excitar de forma selectiva un átomo o molécula puede llevar a métodos más eficientes para la separación de isótopos en la fabricación de armas nucleares.
5 MEDIDAS DE SEGURIDAD
El principal peligro al trabajar con láseres es el daño ocular, ya que el ojo concentra la luz láser igual que cualquier otro tipo de luz. Por eso, el haz del láser no debe incidir sobre los ojos directamente ni por reflexión. Un láser debe ser manejado por personal experto equipado con gafas o anteojos de seguridad.
6 LÁSER ATÓMICO
En enero de 1997, un equipo de físicos estadounidenses anunció la creación del primer láser compuesto de materia en vez de luz. Del mismo modo que en un láser de luz cada fotón viaja en la misma dirección y con la misma longitud de onda que cualquier otro fotón, en un láser atómico cada átomo se comporta de la misma manera que cualquier otro átomo, formando una “onda de materia” coherente.
Los científicos confían en las numerosas e importantes aplicaciones potenciales de los láseres atómicos, aunque presenten algunas desventajas prácticas frente a los láseres de luz debido a que los átomos están sujetos a fuerzas gravitatorias e interaccionan unos con otros de forma distinta a como lo hacen los fotones.