Binomio





Binomio, expresión algebraica que está formada exactamente por dos términos separados por + o -, como x + y o ab - cd. El teorema del binomio nos dice que la expresión general de un binomio cualquiera, como (x + y), elevado a la n-ésima potencia está dada por
El desarrollo completo contiene n + 1 términos, empezando con el término cero y terminando con el término n-ésimo. En este ejemplo, el término cero es xn. El coeficiente genérico del término k en la expresión anterior es
Este teorema fue formulado en la edad media y desarrollado (alrededor de 1676) para exponentes fraccionarios por el científico inglés sir Isaac Newton, lo que le permitió el uso de sus recién descubiertos métodos de cálculo para resolver muchos problemas difíciles. El teorema del binomio, también llamado binomio de Newton, es muy útil en varias ramas de las matemáticas, en particular en la teoría de la probabilidad.

Número (matemáticas)




Número (matemáticas), palabra o símbolo utilizado para designar cantidades o entidades que se comportan como cantidades.
Los números se agrupan en conjuntos o estructuras diversas; cada una contiene a la anterior y es más completa que ella y con mayores posibilidades en sus operaciones. Se enumeran a continuación.
NÚMEROS NATURALES
Son los que sirven para contar los elementos de los conjuntos: N = {0, 1, 2, 3,…, 9, 10, 11, 12,…}
Hay infinitos. Se pueden sumar y multiplicar y con ambas operaciones el resultado es, en todos los casos, un número natural. Sin embargo, no siempre pueden restarse ni dividirse (ni 3 - 7 ni 7 : 4 son números naturales).
NÚMEROS ENTEROS
Son los naturales y los correspondientes negativos: Z = {…, -11, -10, -9,…, -3, -2, -1, 0, 1, 2, 3,…, 9, 10, 11,…}
Además de sumarse y multiplicarse en todos los casos, pueden restarse, por lo que esta estructura mejora a la de los naturales. Sin embargo, en general, dos números enteros no se pueden dividir. Por eso se pasa a la siguiente estructura numérica.
NÚMEROS RACIONALES
Son los que se pueden expresar como cociente de dos números enteros. El conjunto Q de los números racionales está compuesto por los números enteros y por los fraccionarios. Se pueden sumar, restar, multiplicar y dividir (salvo por cero) y el resultado de todas esas operaciones entre dos números racionales es siempre otro número racional.
NÚMEROS REALES
A diferencia de los naturales y de los enteros, los números racionales no están colocados de manera que se puedan ordenar de uno en uno. Es decir, no existe “el siguiente” de un número racional, pues entre dos números racionales cualesquiera hay otros infinitos, de modo que si se representan sobre una recta, ésta queda densamente ocupada por ellos: si tomamos un trozo de recta, un segmento, por pequeño que sea, contiene infinitos números racionales. Sin embargo, entre medias de estos números densamente situados sobre la recta existen también otros infinitos puntos que no están ocupados por racionales. Son los números irracionales.
El conjunto formado por todos los números racionales y los irracionales es el de los números reales, de modo que todos los números mencionados hasta ahora (naturales, enteros, racionales, irracionales) son reales. Estos números ocupan la recta numérica punto a punto, por lo que se llama recta real.
Entre los números reales están definidas las mismas operaciones que entre los racionales (suma, resta, multiplicación y división, salvo por cero).
NÚMEROS IMAGINARIOS
El producto de un número real por sí mismo es siempre 0 o positivo, por lo que la ecuación x2 = -1 no tiene solución en el sistema de los números reales. Si se quiere dar un valor a la x, tal que x = Á, éste no puede ser un valor real, no ya en sentido matemático sino tampoco en sentido técnico. Un nuevo conjunto de números (diferente del de los números reales), el de los números imaginarios, se usa para este fin. El símbolo i representa la unidad de los números imaginarios y equivale a Á. Estos números permiten encontrar, por ejemplo, la solución de la ecuación , que se puede escribir como
x = 3 × i o x = 3i
Los números bi, ≠ 0, se llaman imaginarios puros.
Un número imaginario se obtiene al sumar un número real y un número imaginario puro.
NÚMEROS COMPLEJOS
En su forma general, un número complejo se representa como bi, donde a y b son números reales. El conjunto de los números complejos está formado por todos los número reales y todos los imaginarios.
Los números complejos se suelen representar en el llamado diagrama de Argand. Las partes real e imaginaria de un número complejo se colocan como puntos en dos líneas perpendiculares o ejes. De esta manera, un número complejo se representa como un punto único en un plano, conocido como plano complejo.
Los números complejos son de gran utilidad en la teoría de la corriente eléctrica alterna así como en otras ramas de la física, en ingeniería y en ciencias naturales.

Monomio




Monomio, producto en el que participan un número y una o varias letras. También a un número se le llama monomio. Son monomios: 4x2y; 3x; , (4 – 2)xz2; xy.
Las letras de un monomio se llaman variables o indeterminadas, pues representan números cualesquiera. El conjunto de todas las letras es la parte literal. El número que aparece multiplicando a las letras es el coeficiente.
Se llama grado de un monomio a la suma de los exponentes de las letras que intervienen. Los números son monomios de grado cero.
Por ejemplo:

4x2y es un monomio con coeficiente 4, parte literal x2y, y grado 3, pues la x está al cuadrado y la y elevada a 1 (2 + 1 = 3)
El coeficiente de 3x es 3 y el de (4 – 2)xz2 es 4 – 2, pues es un único número expresado mediante operaciones que se dejan indicadas.
El coeficiente de xy es 1; su grado es 2.
El número  = x0 puede considerarse como un monomio sin parte literal. Su coeficiente es  y su grado es 0.
El valor numérico de un monomio para ciertos valores de las letras es el número que resulta al sustituir las letras por sus valores y efectuar las operaciones indicadas. El valor numérico de 4x2y para = -5 e = 7 es 4 · (-5)2 · 7 = 700.
Monomios semejantes son los que tienen la misma parte literal. Para sumar monomios semejantes se suman sus coeficientes y se mantiene la parte literal. Por ejemplo: 7x2y + 11x2yx2y = (7 +11 –1) x2y = 17x2y
La suma de dos monomios no semejantes no se puede simplificar, se ha de dejar indicada.
El producto de dos monomios es otro monomio cuyo coeficiente es el producto de los coeficientes y cuya parte literal es el producto de las partes literales. El grado del monomio producto es la suma de los grados de los monomios factores. Así, (5x2y)(2xyz) = (5·2)(x2yxyz) = 10x3y2z
El cociente de dos monomios no es, en general, un monomio. Sólo lo será cuando la parte literal del dividendo sea múltiplo de la parte literal del divisor. Por ejemplo, 7x2y/2xy = (7/2)x sí es monomio porque x2y es múltiplo de xy; 7x2y/2xyz = 7x/2z no es monomio.
En matemática superior se considera que el número cero es un monomio de grado “menos infinito” con el fin de que se respete la regla de que el grado del producto de los monomios es igual a la suma de los grados de los factores.

Entradas populares

Me gusta

Seguidores