Electrón





Aspecto ondulatorio del electrón
Estos puntos son generados por un haz de electrones después de atravesar una aleación de titanio y níquel, ser dispersado por los átomos de la aleación y llegar a un detector. Inicialmente, el haz es estrecho, pero después de atravesar la aleación se extiende y cubre una zona circular. Los electrones no cubren dicha zona uniformemente, sino que se concentran en determinados lugares (los puntos). Este comportamiento presenta dos propiedades típicas de las ondas: difracción e interferencia. La difracción se produce cuando el haz de electrones choca con un átomo y se divide en muchos haces. La interferencia se produce cuando dichos haces se solapan reforzándose en algunos lugares y anulándose en otros. En el primer caso se forman puntos, y en el segundo zonas oscuras. Esto confirma que los electrones se comportan como ondas además de como partículas.

Electrón. (Del gr. λεκτρον, ámbar, con acentuación fr.). m. Fís. Partícula elemental más ligera que forma parte de los átomos y que contiene la mínima carga posible de electricidad negativa.

Electrón
Electrón, tipo de partícula elemental de carga negativa que forma parte de la familia de los leptones y que, junto con los protones y los neutrones, forma los átomos y las moléculas. Los electrones están presentes en todos los átomos y cuando son arrancados del átomo se llaman electrones libres.

Robert A. Millikan
El físico estadounidense Robert A. Millikan fue galardonado con el Premio Nobel de Física en 1923. Millikan realizó una serie de experimentos que le permitieron determinar la carga eléctrica de un electrón.

Los electrones intervienen en una gran variedad de fenómenos físicos y químicos. Se dice que un objeto está cargado eléctricamente si sus átomos tienen un exceso de electrones (posee carga negativa) o un déficit de los mismos (posee carga positiva). El flujo de una corriente eléctrica en un conductor es causado por el movimiento de los electrones libres del conductor. La conducción del calor también se debe fundamentalmente a la actividad electrónica. El estudio de las descargas eléctricas a través de gases enrarecidos en los tubos de vacío fue el origen del descubrimiento del electrón. En los tubos de vacío, un cátodo calentado emite una corriente de electrones que puede emplearse para amplificar o rectificar una corriente eléctrica (véase Rectificación). Si esa corriente se enfoca para formar un haz bien definido, éste se denomina haz de rayos catódicos. Si se dirige el haz de rayos catódicos hacia un objetivo adecuado se producen rayos X; si se dirigen hacia la pantalla fluorescente de un tubo de televisión, se obtienen imágenes visibles. Las partículas beta que emiten algunas sustancias radiactivas son electrones.
Los electrones también intervienen en los procesos químicos. Una reacción química de oxidación es un proceso en el cual una sustancia pierde electrones, y una reacción de reducción es un proceso en el cual una sustancia gana electrones.
En 1906, el físico estadounidense Robert Andrews Millikan, mediante su experimento de “la gota de aceite”, determinó la carga del electrón: 1,602 × 10-19 culombios; su masa en reposo es 9,109 × 10-31 kg. La carga del electrón es la unidad básica de electricidad y se considera la carga elemental en el sentido de que todos los cuerpos cargados lo están con un múltiplo entero de dicha carga. El electrón y el protón poseen la misma carga, pero, convencionalmente, la carga del protón se considera positiva y la del electrón negativa.
Los electrones se consideran fermiones porque tienen espín semientero; el espín es la propiedad cuántica de las partículas subatómicas que indica su momento angular intrínseco. La partícula de antimateria correspondiente al electrón es el positrón.

Protón





Protón. (Del gr. πρτον, primero). m. Fís. Partícula subatómica con carga eléctrica positiva, que constituye el núcleo de los átomos junto con los neutrones, y cuyo número, denominado número atómico, determina las propiedades químicas del átomo.

Protón
Protón, partícula nuclear con carga positiva igual en magnitud a la carga negativa del electrón; junto con el neutrón, está presente en todos los núcleos atómicos. Al protón y al neutrón se les denomina también nucleones. El núcleo del atómo de hidrógeno está formado por un único protón. La masa de un protón es de 1,6726 × 10-27 kg, aproximadamente 1.836 veces la del electrón. Por tanto, la masa de un átomo está concentrada casi exclusivamente en su núcleo. El protón tiene un momento angular intrínseco, o espín, y por tanto un momento magnético. Por otra parte, el protón cumple el principio de exclusión. El número atómico de un elemento indica el número de protones de su núcleo, y determina de qué elemento se trata. En física nuclear, el protón se emplea como proyectil en grandes aceleradores para bombardear núcleos con el fin de producir partículas fundamentales (véase Aceleradores de partículas). Como ion del hidrógeno, el protón desempeña un papel importante en la química (véase Ácidos y bases; Ionización).
El antiprotón, la antipartícula del protón, se conoce también como protón negativo. Se diferencia del protón en que su carga es negativa y en que no forma parte de los núcleos atómicos. El antiprotón es estable en el vacío y no se desintegra espontáneamente. Sin embargo, cuando un antiprotón colisiona con un protón, ambas partículas se transforman en mesones, cuya vida media es extremadamente breve (véase Radiactividad). Si bien la existencia de esta partícula elemental se postuló por primera vez en la década de 1930, el antiprotón no se identificó hasta 1955, en el Laboratorio de Radiación de la Universidad de California.
Los protones son parte esencial de la materia ordinaria, y son estables a lo largo de periodos de miles de millones, incluso billones, de años. No obstante, interesa saber si los protones acaban desintegrándose, en una escala temporal de 1033 años o más. Este interés se deriva de los actuales intentos de lograr teorías de unificación que combinen las cuatro interacciones fundamentales de la materia en un único esquema (véase Teoría del campo unificado). Muchas de las teorías propuestas implican que el protón es, en último término, inestable, por lo que los grupos de investigación de numerosos aceleradores de partículas están llevando a cabo experimentos para detectar la desintegración de un protón. Hasta ahora no se han encontrado pruebas claras; los indicios observados pueden interpretarse de otras formas.

Neutrón





Neutrón. (De neutro y -ón2). m. Fís. Partícula masiva sin carga eléctrica. Neutrones y protones forman los núcleos atómicos. || ~ lento. m. neutrón con velocidad del mismo orden que la agitación molecular a temperatura normal. || ~ rápido. m. El de velocidad comparable con la de la luz. □ V. bomba de neutrones.

Neutrón
Neutrón, partícula sin carga que constituye una de las partículas fundamentales que componen la materia. La masa de un neutrón es de 1,675 × 10-27 kg, aproximadamente un 0,125% mayor que la del protón. La existencia del neutrón fue profetizada en 1920 por el físico británico Ernest Rutherford y por científicos australianos y estadounidenses, pero la verificación experimental de su existencia resultó difícil debido a que la carga eléctrica del neutrón es nula y la mayoría de los detectores de partículas sólo registran las partículas cargadas.
DESCUBRIMIENTO
James Chadwick
El físico británico James Chadwick fue galardonado con el Premio Nobel de Física en 1935 por el descubrimiento del neutrón. Este descubrimiento condujo al desarrollo de la fisión nuclear y de la bomba atómica.

El neutrón fue identificado por primera vez en 1932 por el físico británico James Chadwick, que interpretó correctamente los resultados de los experimentos realizados en aquella época por los físicos franceses Irène y Frédéric Joliot-Curie y otros científicos. Los Joliot-Curie habían producido un tipo de radiación anteriormente desconocida mediante la interacción de partículas alfa con núcleos de berilio. Cuando esta radiación se hacía pasar a través de una capa de parafina, las colisiones entre la radiación y los átomos de hidrógeno de la parafina producían protones fácilmente detectables. Chadwick se dio cuenta de que la radiación estaba formada por neutrones.
COMPORTAMIENTO
El neutrón es una partícula constituyente de todos los núcleos de número másico superior a 1, es decir, de todos los núcleos salvo el del hidrógeno ordinario (véase Átomo). Los neutrones libres -que no forman parte de un núcleo atómico- se producen en reacciones nucleares. Pueden ser expulsados de los núcleos atómicos con diferentes velocidades o energías, y son fácilmente frenados hasta alcanzar una energía muy baja a través de una serie de colisiones con núcleos ligeros como los del hidrógeno, el deuterio o el carbono. (En relación con el papel de los neutrones en la producción de energía atómica, véase Energía nuclear). Cuando es expulsado del núcleo, el neutrón es inestable, y se desintegra para dar lugar a un protón, un electrón y un neutrino. Al igual que el protón y el electrón, el neutrón posee momento angular intrínseco o espín (véase Mecánica). Los neutrones actúan como pequeños imanes individuales; esta propiedad permite la creación de haces de neutrones polarizados. El neutrón tiene un momento magnético negativo de -1,913141 magnetones nucleares, aproximadamente una milésima del valor del magnetón de Bohr. Su vida media es de aproximadamente 10 minutos. Véase Radiactividad.
La antipartícula del neutrón, conocida como antineutrón, tiene su misma masa, espín y tasa de desintegración beta. Estas partículas se producen en ocasiones en la colisión de antiprotones con protones, y poseen un momento magnético igual en magnitud y opuesto en signo al del neutrón. Según la teoría de partículas actual, el neutrón y el antineutrón —y otras partículas nucleares— están compuestas a su vez de quarks.
RADIOGRAFÍA DE NEUTRONES
Una aplicación cada vez más importante de los neutrones generados en un reactor es la radiografía de neutrones, en la que se obtiene información determinando la absorción de un haz de neutrones emitido por un reactor nuclear o una fuente radioisotópica intensa. La técnica se parece a la radiografía de rayos X. Sin embargo, muchas sustancias que son opacas a los rayos X —como los metales— dejan pasar los neutrones, y otras que transmiten los rayos X (en particular, compuestos de hidrógeno) son opacas a los neutrones. Una radiografía de neutrones se genera exponiendo una lámina metálica delgada a un haz de neutrones que ha atravesado el objeto que se desea examinar. Los neutrones dejan sobre la lámina una ‘imagen’ radiactiva invisible del objeto. Para obtener una imagen visible se coloca una película fotográfica en contacto con la lámina. También se ha desarrollado una técnica para el visionado directo de la imagen en una pantalla.
La radiografía de neutrones, que se empleó por primera vez en Europa en la década de 1930, se ha utilizado mucho a partir de 1950 para estudiar el combustible nuclear y otros componentes de los reactores. Más recientemente, se ha empleado para estudiar aparatos explosivos y componentes de vehículos espaciales. En la actualidad, el uso de haces de neutrones está generalizado en las ciencias físicas y biológicas, así como en las aplicaciones tecnológicas, y el análisis de activación de neutrones es una herramienta importante en campos tan diversos como la paleontología, la arqueología o la historia del arte.

Entradas populares

Me gusta

Seguidores