Tecnología




Tecnología, término general que se aplica al proceso a través del cual los seres humanos diseñan herramientas y máquinas para incrementar su control y su comprensión del entorno material. El término proviene de las palabras griegas tecné, que significa 'arte' u 'oficio', y logos, 'conocimiento' o 'ciencia', área de estudio; por tanto, la tecnología es el estudio o ciencia de los oficios.
Algunos historiadores científicos argumentan que la tecnología no es sólo una condición esencial para la civilización avanzada y muchas veces industrial, sino que también la velocidad del cambio tecnológico ha desarrollado su propio ímpetu en los últimos siglos. Las innovaciones parecen surgir a un ritmo que se incrementa en progresión geométrica, sin tener en cuenta los límites geográficos ni los sistemas políticos. Estas innovaciones tienden a transformar los sistemas de cultura tradicionales, produciéndose con frecuencia consecuencias sociales inesperadas. Por ello, la tecnología debe concebirse como un proceso creativo y destructivo a la vez.
CIENCIA Y TECNOLOGÍA
Los significados de los términos ciencia y tecnología han variado significativamente de una generación a otra. Sin embargo, se encuentran más similitudes que diferencias entre ambos términos.
Tanto la ciencia como la tecnología implican un proceso intelectual, ambas se refieren a relaciones causales dentro del mundo material y emplean una metodología experimental que tiene como resultado demostraciones empíricas que pueden verificarse mediante repetición. La ciencia, al menos en teoría, está menos relacionada con el sentido práctico de sus resultados y se refiere más al desarrollo de leyes generales; pero la ciencia práctica y la tecnología están inextricablemente relacionadas entre sí. La interacción variable de las dos puede observarse en el desarrollo histórico de algunos sectores.
En realidad, el concepto de que la ciencia proporciona las ideas para las innovaciones tecnológicas, y que la investigación pura, por tanto, es fundamental para cualquier avance significativo de la civilización industrial tiene mucho de mito. La mayoría de los grandes cambios de la civilización industrial no tuvieron su origen en los laboratorios. Las herramientas y los procesos fundamentales en los campos de la mecánica, la química, la astronomía, la metalurgia y la hidráulica fueron desarrollados antes de que se descubrieran las leyes que los gobernaban. Por ejemplo, la máquina de vapor era de uso común antes de que la ciencia de la termodinámica dilucidara los principios físicos que sostenían sus operaciones. Sin embargo, algunas actividades tecnológicas modernas, como la astronáutica y la energía nuclear, dependen de la ciencia.
En los últimos años se ha desarrollado una distinción radical entre ciencia y tecnología. Con frecuencia los avances científicos soportan una fuerte oposición, pero en los últimos tiempos muchas personas han llegado a temer más a la tecnología que a la ciencia. Para estas personas, la ciencia puede percibirse como una fuente objetiva y serena de las leyes eternas de la naturaleza, mientras que estiman que las manifestaciones de la tecnología son algo fuera de control (véase los apartados de este artículo Logros y beneficios tecnológicos, y Efectos de la tecnología).
LA TECNOLOGÍA EN LA ANTIGÜEDAD Y EN LA EDAD MEDIA
La tecnología ha sido un proceso acumulativo clave en la experiencia humana. Es posible que esto se comprenda mejor en un contexto histórico que traza la evolución de los primeros seres humanos, desde un periodo de herramientas muy simples a las redes complejas a gran escala que influyen en la mayor parte de la vida humana contemporánea. Con el fin de mantener la sencillez del siguiente resumen, se tratan con mayor detalle los desarrollos del mundo industrializado, pero también se incluyen algunos desarrollos de otras culturas.
La tecnología primitiva
Los artefactos humanos más antiguos que se conocen son las hachas manuales de piedra encontradas en África, en el este de Asia y en Europa. Datan, aproximadamente, del 250.000 a.C., y sirven para definir el comienzo de la edad de piedra. Los primeros fabricantes de herramientas fueron grupos nómadas de cazadores que usaban las caras afiladas de la piedra para cortar su comida y fabricar ropa y tiendas. Alrededor del 100.000 a.C., las cuevas de los ancestros homínidos de los hombres modernos (véase Evolución humana) contenían hachas ovaladas, rascadores, cuchillos y otros instrumentos de piedra que indicaban que el hacha de mano original se había convertido en una herramienta para fabricar otras herramientas. Muchos miembros del reino animal utilizan herramientas, pero esta capacidad para crear herramientas que, a su vez, sirvan para fabricar otras distingue a la especie humana del resto de los seres vivos.
El siguiente gran paso de la tecnología fue el control del fuego. Golpeando piedras contra piritas para producir chispas es posible encender fuego y liberarse de la necesidad de mantener los fuegos obtenidos de fuentes naturales. Además de los beneficios obvios de la luz y el calor, el fuego también se usó para cocer cacharros de arcilla, fabricando recipientes resistentes que podían utilizarse para cocinar cereales y para la infusión y la fermentación.
La tecnología primitiva no estaba centrada solamente en las herramientas prácticas. Se pulverizaron minerales de color para obtener pigmentos, que se aplicaban al cuerpo humano, a utensilios de arcilla, a cestas, ropa y otros objetos. En su búsqueda de pigmentos, las gentes de la antigüedad descubrieron el mineral verde llamado malaquita y el mineral azul denominado azurita. Cuando se golpeaban estas menas, ricas en cobre, no se convertían en polvo, sino que se doblaban; se podían pulir, pero no partir. Por estas cualidades, el cobre en trozos pequeños se introdujo muy pronto en la joyería.
Estos pueblos también aprendieron que, si este material era forjado repetidamente y puesto al fuego, no se partía ni se agrietaba. Este proceso de eliminación de tensiones del metal, llamado recocido, fue introducido por las civilizaciones de la edad de piedra, sobre todo cuando hacia el año 3000 a.C. se descubrió también que la aleación de estaño y cobre producía bronce (véase Edad del bronce). El bronce no es sólo más maleable que el cobre, sino que también proporciona una mejor arista, una cualidad necesaria para objetos como hoces y espadas.
Aunque había depósitos de cobre en Siria y Turquía, en las cabeceras de los ríos Tigris y Éufrates, los mayores depósitos de cobre del mundo antiguo se encontraron en la isla de Creta. Con el desarrollo de barcos capaces de navegar para llegar a este recurso extremadamente valioso, Knósos (en Creta) se convirtió en un rico centro minero durante la edad del bronce.
Desarrollo de la agricultura
Cuando llegó la edad del bronce, las distintas sociedades distribuidas por cada continente habían conseguido ya varios avances tecnológicos. Se desarrollaron arpones con púas, el arco y las flechas, las lámparas de aceite animal y las agujas de hueso para fabricar recipientes y ropa. También se embarcaron en una revolución cultural mayor, el cambio de la caza y la recolección nómada a la práctica sedentaria de la agricultura.
Las primeras comunidades agrícolas surgieron al final de la glaciación más reciente (hacia el año 10.000 a.C.). Sus huellas pueden encontrarse en áreas muy lejanas entre sí, desde el sureste de Asia hasta México. Las más famosas se dieron en Mesopotamia (el Irak actual) en los valles de las riberas fértiles y templadas del Tigris y el Éufrates. El suelo de estas fértiles laderas se trabajaba con facilidad para plantar, y contaba con un gran número de árboles para obtener leña.
Hacia el año 5000 a.C., las comunidades agrícolas se establecieron en muchas partes del mundo, incluidas las áreas conocidas hoy como Siria, Turquía, Líbano, Israel, Jordania, Grecia, y las islas de Creta y Chipre. Las sociedades agrícolas construyeron en estos lugares edificaciones de piedra, usaron la hoz para cosechar los cereales, desarrollaron un arado primitivo y mejoraron sus técnicas en el trabajo con metales. También comenzó el comercio de piedras. Hacia el 4000 a.C., la agricultura se extendió desde estos centros hacia el Oeste al río Danubio en Europa central, hacia el Sur a las costas del Mediterráneo de África (incluido el río Nilo), y hacia el Este hasta el valle del Indo.
El desarrollo de la cuenca del Nilo aportó otros avances tecnológicos. En ese valle, el río se inunda al comienzo de la primavera. Tuvo que desarrollarse un sistema de irrigación y canales para regar los cultivos durante las estaciones de cosecha, cuando la lluvia es insuficiente. La propiedad de la tierra tenía que determinarse cada año mediante un sistema de medición, ya que los marcadores de la propiedad se perdían con frecuencia con las inundaciones. Los valles del Tigris y el Éufrates presentaban otros problemas tecnológicos. Las inundaciones se producían después de la estación de cosecha, por lo que era necesario aprender la técnica de construir diques y barreras para las inundaciones.
Otros descubrimientos primitivos
Para ayudar al transporte eficiente de minerales para la creciente industria del cobre se construyeron carros de dos ruedas (la rueda más antigua databa aproximadamente del año 3500 a.C. en Mesopotamia). Sin embargo, los medios de transporte más utilizados fueron los barcos de juncos y las balsas de madera, que surgieron primero en Mesopotamia y Egipto. Un resultado importante del mercado de la cerámica, los metales y las materias primas fue la creación de una marca o sello, que se usaba para identificar a los creadores o propietarios particulares.
La tecnología también comenzó a manifestar otro de sus efectos, una alteración mayor del entorno por la introducción de nuevas prácticas: por ejemplo, la demanda de leña condujo a la deforestación, y el pastoreo excesivo de ovejas y de ganado vacuno provocó que crecieran menos árboles nuevos en las tierras pobres de la región. Así, la doma de animales, la agricultura de monocultivo, la deforestación y las inundaciones periódicas llevaron a la aparición gradual de áreas desérticas.
El desarrollo de las ciudades
Después del año 4000 a.C. apareció una de las creaciones más complejas de la humanidad: la ciudad. Desde este punto de vista, la tecnología no puede describirse sólo en términos de herramientas simples, avances agrícolas y procesos técnicos como la metalurgia, ya que la ciudad es en sí misma un sistema tecnológico. Éste es un hecho evidente en los primeros símbolos escritos que se usaron para representar una ciudad: un círculo con redes de líneas que indicaban los primeros sistemas de transporte y comunicaciones.
La aparición de la ciudad hizo posible un excedente de alimentos y una abundancia de riqueza material que posibilitó la construcción de templos, tumbas y amurallamientos. La acumulación de metales preciosos, la construcción de murallas defensivas, y el control de los ejércitos y los sacerdotes aseguraron la ascendencia del rey, al que puede denominarse el primer tecnólogo urbano.
Los zigurats de Mesopotamia y las pirámides de Egipto o México simbolizan el poder organizativo y la magnitud tecnológica de los primeros asentamientos urbanos.
La construcción de estas edificaciones y monumentos enormes, el crecimiento del mercado de los productos de metal y el desarrollo de los recursos acuíferos también llevó a una normalización de los sistemas de medida. En Mesopotamia, el codo se convirtió en el patrón de longitud. El tiempo se medía en Egipto con un calendario que dividía el ciclo anual de estaciones en meses y días.
El crecimiento de las ciudades también estimuló una necesidad mayor de escribir. Los egipcios mejoraron la tabla de arcilla, que era difícil de manejar, con la fabricación de un material similar al papel sobre el cual escribían con jeroglíficos. Este material se fabricaba utilizando la planta del papiro. Además, la ciudad provocó una nueva división del trabajo: el sistema de castas. Esta estructura proporcionaba seguridad, estatus social y ocio a la clase intelectual de los escribas, médicos, profesores, ingenieros, magos y adivinadores. Sin embargo, el ejército contaba con los mayores recursos.
El auge del ejército
Las primeras ciudades fueron también construidas dentro de murallas para defenderse; estaban organizadas para la batalla y la conquista. Los centros urbanos de Ur, Nippur, Uruk, Tebas, Heliópolis, Assur, Nínive y Babilonia fueron arsenales de armamento destructivo. El objetivo de una fuerza militar era devastar la ciudad de su enemigo. Ur, en Sumeria, no fue sólo una de las primeras grandes ciudades en alzarse (hacia el 4000 a.C.), sino que también fue una de las primeras destruidas (aproximadamente en el 2000 a.C.). De modo similar, en el valle del Indo, la gran ciudad de Mohenjo-Daro fue fundada sobre el 2500 a.C. y destruida hacia el 1700 a.C. por los ejércitos de carros del norte. El mismo ejemplo se repitió en Perú y en Ecuador hacia el año 1000 a.C. y más tarde en México y Centroamérica.
La tecnología militar del mundo antiguo de desarrolló en tres fases inconexas. En la primera fase, surgió la infantería con sus cascos de piel o de cobre, arcos, lanzas, escudos y espadas. A esta fase le siguió el desarrollo de los carros, que al principio fueron vehículos pesados para el uso de los comandantes. La inclusión posterior de radios en las ruedas para aligerarlas, y un bocado y una brida para el caballo, hizo del carro una máquina de guerra ligera que podía aventajar a la infantería enemiga. La tercera fase se centró en el incremento de la movilidad y la velocidad de la caballería. Los asirios, con su conocimiento del armamento de hierro y sus espléndidos jinetes, dominaron la mayoría del mundo civilizado entre el 1200 y el 612 a.C.
Con la introducción del estribo en Asia, aproximadamente en el siglo II a.C., los jinetes eran capaces de obtener mejor estabilidad en la lucha con espada, e hicieron que los carros de guerra quedaran obsoletos. Las unidades de caballería de ataque rápido, que se observaron primero en Egipto y Persia, se convirtieron en las principales fuerzas militares. Con su aparición surgió la necesidad de mejores transportes y sistemas de comunicación. Los persas fueron los primeros en desarrollar una red de carreteras y estaciones de parada para recorrer su vasto imperio, que se extendía desde el Punjab al mar Mediterráneo.
Tecnología griega y romana
El Imperio persa de Ciro II el Grande fue derrotado y sucedido por el imperio creado por Alejandro Magno (véase Periodo helenístico). Los griegos fueron los primeros en convertirse en una potencia, a través de sus conocimientos en astilleros y comercio, y mediante su colonización de las costas del Mediterráneo. La derrota de los persas se debió en parte al poder naval griego.
Los persas y los griegos también introdujeron una nueva casta dentro de la división del trabajo: la esclavitud. Durante la edad de oro griega, su civilización dependía de los esclavos en todo lo concerniente al trabajo manual. La mayoría de los sabios estaban de acuerdo en que en las sociedades donde se practicaba la esclavitud los problemas de la productividad se resolvían mediante el incremento del número de trabajadores, antes que por los métodos nuevos de producción o nuevas fuentes energéticas. Debido a esto, los conocimientos teóricos y la enseñanza en Grecia (y posteriormente en Roma) estuvieron muy alejados del trabajo físico y de la fabricación.
Esto no quiere decir que los griegos no desarrollaran nuevas ideas tecnológicas. Arquímedes, Herón de Alejandría, Ctesías y Tolomeo escribieron sobre los principios de sifones, poleas, palancas, manivelas, bombas contra incendios, ruedas dentadas, válvulas y turbinas. Algunas contribuciones prácticas importantes de los griegos fueron el reloj de agua de Ctesías, la dioptra (un instrumento de topografía) de Herón de Alejandría y el tornillo hidráulico de Arquímedes. Del mismo modo, Tales de Mileto mejoró la navegación al introducir métodos de triangulación y Anaximandro dio forma al primer mapa del mundo. No obstante, los avances tecnológicos de los griegos no fueron a la par con sus contribuciones al conocimiento teórico.
El Imperio romano que conquistó y sucedió al de los griegos fue similar en este aspecto. Los romanos, sin embargo, fueron grandes tecnólogos en cuanto a la organización y la construcción. Establecieron una civilización urbana que disfrutó del primer periodo largo de paz en la historia de la humanidad. El primer gran cambio que se produjo en este periodo fue en la ingeniería con la construcción de enormes sistemas de obras públicas. Con el uso de cemento resistente al agua y el principio del arco, los ingenieros romanos construyeron 70.800 km de carreteras a través de su vasto imperio. También construyeron numerosos circos, baños públicos y cientos de acueductos, alcantarillas y puentes; asimismo fueron responsables de la introducción del molino de agua y del posterior diseño de ruedas hidráulicas con empuje superior e inferior, que se usaron para moler grano, aserrar madera y cortar mármol. En el ámbito militar, los romanos avanzaron tecnológicamente con la mejora de armas, como la jabalina y la catapulta (véase Artillería).
La edad media
El periodo histórico transcurrido entre la caída de Roma y el renacimiento (aproximadamente del 400 al 1500) se conoce como edad media. En contra de la creencia popular, se produjeron grandes avances tecnológicos en este periodo. Además, las culturas bizantina e islámica que prosperaron en esta época, tuvieron una importante actividad en las áreas de la filosofía natural, el arte, la literatura, la religión, y en particular la cultura islámica aportó numerosas contribuciones científicas, que tendrían gran importancia en el renacimiento europeo. La sociedad medieval se adaptaba fácilmente, y estaba dispuesta a adquirir nuevas ideas y nuevos métodos de producción a partir de cualquier fuente, viniera de las culturas del islam y Bizancio, China, o de los lejanos vikingos.
La guerra y la agricultura
En el área de la guerra, se mejoró la caballería como arma militar, con la invención de la lanza y la silla de montar hacia el siglo IV; se desarrolló también la armadura más pesada, la cría de caballos más grandes y la construcción de castillos. La introducción de la ballesta, y más tarde de la técnica de la pólvora desde China, llevó a la fabricación de pistolas, cañones y morteros (a través del desarrollo de la cámara de explosión), reduciendo de este modo la efectividad de los escudos pesados y de las fortificaciones de piedra.
Una de las máquinas más importantes de la época medieval fue el molino, que no sólo incrementó la cantidad de grano molido y de madera aserrada, sino que también favoreció la formación de molineros expertos en manivelas compuestas, levas y otras técnicas de movimiento de máquinas y combinación de sus partes con otros dispositivos. La rueda de hilado, que se introdujo desde la India en el siglo XIII o XIV, mejoró la producción de hilo y la costura de la ropa y se convirtió en una máquina común en el hogar. El hogar, en sí mismo, también se transformó con la inclusión de una chimenea, que ahorraba la madera cada vez más escasa debido a la expansión agrícola. Hacia el año 1000, los excedentes agrícolas, debidos a varias mejoras en el arado, llevaron a un incremento del comercio y al crecimiento de las ciudades. En éstas se desarrollaron las innovaciones arquitectónicas de muchos reinos, para culminar en grandiosas catedrales góticas de altos muros, posibles gracias a los arbotantes.
El transporte
Las innovaciones en el transporte durante la edad media ampliaron la difusión de la tecnología a través de grandes áreas. Algunos elementos como la herradura, el árbol de varas (para enjaezar de forma efectiva los caballos a los carros) y el coche de caballos aceleraron el transporte de personas y mercancías. Se produjeron también cambios importantes en la tecnología marina. El desarrollo de la quilla, la vela latina triangular para una mayor maniobrabilidad, y de la brújula magnética (en el siglo XIII) hicieron de los barcos veleros las máquinas más complejas de la época. El príncipe Enrique de Portugal creó una escuela para enseñar a los navegantes cómo usar correctamente estas máquinas. Quizás los estudiantes del príncipe Enrique hicieron más de lo que habían hecho las teorías astronómicas de Copérnico, al cambiar la percepción que tenía la humanidad del mundo (véase Navegación).
Otros inventos importantes
Otros dos inventos medievales, el reloj y la imprenta, tuvieron gran influencia en todos los aspectos de la vida humana. La invención de un reloj con péndulo en 1286 hizo posible que la gente no siguiera viviendo en un mundo estructurado diariamente por el curso del Sol, y cada año por el cambio de estaciones. El reloj fue además una ayuda inmensa para la navegación, y la medida precisa del tiempo fue esencial para el desarrollo de la ciencia moderna.
La invención de la imprenta, a su vez, provocó una revolución social que no se ha detenido todavía. Los chinos habían desarrollado tanto el papel como la imprenta antes del siglo II d.C., pero esas innovaciones no alcanzaron demasiada expansión en el mundo occidental hasta mucho más tarde. El pionero de la imprenta, el alemán Johann Gutenberg, solucionó el problema del moldeo de tipos móviles en el año 1450. Una vez desarrollada, la imprenta se difundió rápidamente y comenzó a reemplazar a los textos manuscritos. De este modo, la vida intelectual no continuó siendo dominio de la Iglesia y el Estado, y la lectura y la escritura se convirtieron en necesidades de la existencia urbana.
LA TECNOLOGÍA EN LA EDAD MODERNA
Al final de la edad media, los sistemas tecnológicos denominados ciudades hacía mucho que eran la característica principal de la vida occidental. En 1600, Londres y Amsterdam tenían poblaciones superiores a 100.000 habitantes, y París duplicaba esa cantidad. Además, los alemanes, los ingleses, los españoles y los franceses comenzaron a desarrollar imperios mundiales. A principios del siglo XVIII, los recursos de capital y los sistemas bancarios estaban lo suficientemente bien establecidos en Gran Bretaña como para iniciar la inversión en las técnicas de producción en serie que satisfarían algunas de esas aspiraciones de la clase media.
La Revolución Industrial
La Revolución Industrial comenzó en Inglaterra porque este país tenía los medios técnicos precisos, un fuerte apoyo institucional y una red comercial amplia y variada. Los cambios económicos, incluida una mayor distribución de la riqueza y un aumento del poder de la clase media, la pérdida de importancia de la tierra como fuente fundamental de riqueza y poder, y los negocios oportunistas, contribuyeron a que la Revolución Industrial comenzara en Gran Bretaña. Las primeras fábricas aparecieron en 1740, concentrándose en la producción textil (véase Sistema industrial). En esa época, la mayoría de los ingleses usaban prendas de lana, pero en 100 años las prendas de lana ásperas se vieron desplazadas por el algodón, especialmente tras la invención de la desmotadora de algodón del estadounidense Eli Whitney en 1793. Algunas inventos británicos, como la cardadora y las máquinas de lanzadera volante de John Kay, la máquina de hilar algodón de James Hargreaves y las mejoras en los telares realizadas por Samuel Cromptom fueron integrados con una nueva fuente de potencia: la máquina de vapor, desarrollada en Gran Bretaña por Thomas Newcomen, James Watt y Richard Trevithick, y en Estados Unidos por Oliver Evans. En un periodo de 35 años, desde la década de 1790 hasta la de 1830, se pusieron en marcha en las islas Británicas más de 100.000 telares mecánicos.
Una de las innovaciones más importantes en el proceso de telares fue introducida en Francia en 1801 por Joseph Jacquard. Su telar usaba tarjetas con perforaciones para determinar la ubicación del hilo en la urdimbre. El uso de las tarjetas perforadas inspiró al matemático Charles Babbage para intentar diseñar una máquina calculadora basada en el mismo principio. A pesar de que la máquina no se convirtió nunca en realidad, presagiaba la gran revolución de las computadoras de la última parte del siglo XX.
Nuevas prácticas laborales
La Revolución Industrial condujo a un nuevo modelo de división del trabajo, creando la fábrica moderna, una red tecnológica cuyos trabajadores no necesitan ser artesanos y no tienen que poseer conocimientos específicos. Por ello, la fábrica introdujo un proceso de remuneración impersonal basado en un sistema de salarios. Como resultado de los riesgos financieros asumidos por los sistemas económicos que acompañaban a los desarrollos industriales, la fábrica condujo también a los trabajadores a la amenaza constante del despido.
El sistema de fábricas triunfó después de una gran resistencia por parte de los gremios ingleses y de los artesanos, que veían con claridad la amenaza sobre sus ingresos y forma de vida. En la fabricación de mosquetes, por ejemplo, los armeros lucharon contra el uso de partes intercambiables y la producción en serie de rifles. Sin embargo, el sistema de fábricas se convirtió en una institución básica de la tecnología moderna, y el trabajo de hombres, mujeres y niños se convirtió en otra mera mercancía dentro del proceso productivo. El montaje final de un producto (ya sea una segadora mecánica o una máquina de coser) no es el trabajo de una persona, sino el resultado de un sistema integrado y colectivo. Esta división del trabajo en operaciones, que cada vez se especificaba más, llegó a ser la característica determinante del trabajo en la nueva sociedad industrial, con todas las horas de tedio que esto supone.
Aceleración de las innovaciones
Al aumentar la productividad agrícola y desarrollarse la ciencia médica, la sociedad occidental llegó a tener gran fe en lo positivo del cambio tecnológico, a pesar de sus aspectos menos agradables. Algunas realizaciones de ingeniería como la construcción del canal de Suez, el canal de Panamá y la torre Eiffel (1889) produjeron orgullo y, en gran medida, asombro. El telégrafo y el ferrocarril interconectaron la mayoría de las grandes ciudades. A finales del siglo XIX, la bombilla (foco) inventada por Thomas Alva Edison comenzó a reemplazar a las velas y las lámparas. En treinta años todas las naciones industrializadas generaban potencia eléctrica para el alumbrado y otros sistemas.
Algunos inventos del siglo XIX y XX, como el teléfono, la radio, el automóvil con motor y el aeroplano sirvieron no sólo para mejorar la vida, sino también para aumentar el respeto universal que la sociedad en general sentía por la tecnología. Con el desarrollo de la producción en serie con cadenas de montaje para los automóviles y para aparatos domésticos, y la invención aparentemente ilimitada de más máquinas para todo tipo de tareas, la aceptación de las innovaciones por parte de los países más avanzados, sobre todo en Estados Unidos, se convirtió no sólo en un hecho de la vida diaria, sino en un modo de vida en sí mismo. Las sociedades industriales se transformaron con rapidez gracias al incremento de la movilidad, la comunicación rápida y a una avalancha de información disponible en los medios de comunicación.
La I Guerra Mundial y la Gran Depresión forzaron un reajuste de esta rápida explosión tecnológica. El desarrollo de los submarinos, armas, acorazados y armamento químico hizo ver más claramente la cara destructiva del cambio tecnológico. Además, la tasa de desempleados en todo el mundo y los desastres provocados por las instituciones capitalistas en la década de 1930 suscitaron en algunos sectores la crítica más enérgica sobre los beneficios que resultaban del progreso tecnológico.
Con la II Guerra Mundial llegó el desarrollo del arma que desde entonces constituye una amenaza general para la vida sobre el planeta: la bomba atómica. El gran programa para fabricar las primeras bombas atómicas durante la guerra, el Proyecto Manhattan, fue el esfuerzo tecnológico más grande y más caro de la historia hasta la fecha. Este programa abrió una época no sólo de armamento de destrucción en masa, sino también de ciencia de alto nivel, con proyectos tecnológicos a gran escala, que a menudo financiaban los gobiernos y se dirigían desde importantes laboratorios científicos. Una tecnología más pacífica surgida de la II Guerra Mundial (el desarrollo de las computadoras, transistores, electrónica y las tendencias hacia la miniaturización) tuvo un efecto mayor sobre la sociedad (véase Microprocesador). Las enormes posibilidades que se ofrecían se fueron convirtiendo rápidamente en realidad; esto trajo consigo la sustitución de la mano de obra por sistemas automatizados y los cambios rápidos y radicales en los métodos y prácticas de trabajo.
Logros y beneficios tecnológicos
Dejando a un lado los efectos negativos, la tecnología hizo que las personas ganaran en control sobre la naturaleza y construyeran una existencia civilizada. Gracias a ello, incrementaron la producción de bienes materiales y de servicios y redujeron la cantidad de trabajo necesario para fabricar una gran serie de cosas. En el mundo industrial avanzado, las máquinas realizan la mayoría del trabajo en la agricultura y en muchas industrias, y los trabajadores producen más bienes que hace un siglo con menos horas de trabajo. Una buena parte de la población de los países industrializados tiene un mejor nivel de vida (mejor alimentación, vestimenta, alojamiento y una variedad de aparatos para el uso doméstico y el ocio). En la actualidad, muchas personas viven más y de forma más sana como resultado de la tecnología.
En el siglo XX los logros tecnológicos fueron insuperables, con un ritmo de desarrollo mucho mayor que en periodos anteriores. La invención del automóvil, la radio, la televisión y teléfono revolucionó el modo de vida y de trabajo de muchos millones de personas. Las dos áreas de mayor avance han sido la tecnología médica, que ha proporcionado los medios para diagnosticar y vencer muchas enfermedades mortales, y la exploración del espacio (véase Astronáutica), donde se ha producido el logro tecnológico más espectacular del siglo: por primera vez los hombres consiguieron abandonar y regresar a la biosfera terrestre.
Efectos de la tecnología
Durante las últimas décadas, algunos observadores han comenzado a advertir sobre algunos resultados de la tecnología que también poseen aspectos destructivos y perjudiciales. De la década de 1970 a la de 1980, el número de estos resultados negativos ha aumentado y sus problemas han alcanzado difusión pública. Los observadores señalaron, entre otros peligros, que los tubos de escape de los automóviles estaban contaminando la atmósfera, que los recursos mundiales se estaban usando por encima de sus posibilidades, que pesticidas como el DDT amenazaban la cadena alimenticia, y que los residuos minerales de una gran variedad de recursos industriales estaban contaminando las reservas de agua subterránea. En las últimas décadas, se argumenta que el medio ambiente ha sido tan dañado por los procesos tecnológicos que uno de los mayores desafíos de la sociedad moderna es la búsqueda de lugares para almacenar la gran cantidad de residuos que se producen. Véase Lluvia ácida; Contaminación atmosférica; Conservación; Ecología; Capa de ozono; Lluvia radiactiva. Los problemas originados por la tecnología son la consecuencia de la incapacidad de predecir o valorar sus posibles consecuencias negativas. Se seguirán sopesando las ventajas y las desventajas de la tecnología, mientras se aprovechan sus resultados.
Alternativas propuestas
El concepto denominado tecnología apropiada, conveniente o intermedia se acepta como alternativa a los problemas tecnológicos de las naciones industrializadas y, lo que es más importante, como solución al problema del desequilibrio social provocado por la transferencia de tecnologías avanzadas a países en vías de desarrollo. Se dice que el carácter arrollador de la tecnología moderna amenaza a ciertos valores, como la calidad de vida, la libertad de elección, el sentido humano de la medida y la igualdad de oportunidades ante la justicia y la creatividad individual. Los defensores de este punto de vista proponen un sistema de valores en el que las personas reconozcan que los recursos de la Tierra son limitados y que la vida humana debe reestructurarse alrededor del compromiso de controlar el crecimiento de la industria, el tamaño de las ciudades y el uso de la energía. La restauración y la renovación de los recursos naturales son los principales objetivos tecnológicos.
Además se ha argumentado que, como la sociedad moderna ya no vive en la época industrial del siglo XIX y principios del XX (y que la sociedad postindustrial es ya una realidad), las redes complejas posibles gracias a la electrónica avanzada harán obsoletas las instituciones de los gobiernos nacionalistas, las corporaciones multinacionales y las ciudades superpobladas.
La tecnología ha sido siempre un medio importante para crear entornos físicos y humanos nuevos. Sólo durante el siglo XX se hizo necesario preguntar si la tecnología destruiría total o parcialmente la civilización creada por el ser humano.
Perspectivas
A lo largo del siglo XX la tecnología se extendió desde Europa y Estados Unidos a otras naciones importantes como Japón y la antigua Unión Soviética, pero en ningún caso lo hizo a todos los países del mundo. Muchos de los países de los denominados en vías de desarrollo no han experimentado nunca el sistema de fábricas ni otras instituciones de la industrialización, y muchos millones de personas sólo disponen de la tecnología más básica. La introducción de la tecnología occidental ha llevado a menudo a una dependencia demasiado grande de los productos occidentales. Para la población de los países en vías de desarrollo que depende de la agricultura de subsistencia tiene poca relevancia este tipo de tecnologías. En los últimos años, grupos de ayuda occidentales han intentado desarrollar tecnologías apropiadas, usando las técnicas y materiales de los pueblos indígenas.
Véase también Invención.

Telescopio espacial Hubble




Telescopio espacial Hubble, el primer observatorio en órbita de uso general, desarrollado en un marco de cooperación entre la NASA y la Agencia Espacial Europea (ESA). Lanzado el 24 de abril de 1990, el telescopio espacial Hubble (HST, siglas en inglés) recibió su nombre en honor del astrónomo estadounidense Edwin P. Hubble. El espejo principal del telescopio tiene un diámetro de 2,4 m y sus lentes están diseñadas de forma que cuando realiza una observación de la luz visible el telescopio puede determinar, en teoría, objetos astronómicos que se encuentran a una distancia angular de hasta 0,05 segundos de arco. En comparación, los grandes telescopios tradicionales sobre la Tierra, funcionando cuando el cielo está en condiciones atmosféricas óptimas, obtienen una resolución de imagen de 0,5 segundos de arco. En principio, el Hubble estaba equipado para realizar observaciones en las regiones visible y ultravioleta del espectro electromagnético (véase Radiación electromagnética) y contaba con cinco detectores: las cámaras WFPC (Wide Field Planetary Camera) y FOC (Faint Object Camera), los espectrógrafos FOS (Faint Object Spectrograph) y GHRS (Goddard High Resolution Spectrograph), y el fotómetro HSP (High Speed Photometer).
Cuando el telescopio ya estaba en órbita, los científicos descubrieron que su espejo principal no enfocaba bien debido a un error de fabricación. Se llevó a cabo una misión de asistencia para reparar el problema en diciembre de 1993, utilizando la lanzadera espacial Endeavour. Se insertó un dispositivo de corrección óptica llamado COSTAR (Corrective Optics Space Telescope Axial Replacement) en la ranura correspondiente al fotómetro de alta velocidad (HSP), que tuvo que retirarse. La cámara WFPC, con un recorrido óptico diferente del de los otros cuatro instrumentos, fue sustituida por la cámara WFPC2, que tenía incorporado un elemento corrector para el defecto del espejo principal. Esta cámara proporcionó imágenes más detalladas de algunos fenómenos, como la formación de estrellas. El telescopio también facilitó una de las mejores visiones del planeta Júpiter cuando fue bombardeado por los fragmentos del cometa Shoemaker-Levy 9 en julio de 1994. Las imágenes de los efectos producidos por las colisiones, proporcionaron a los científicos datos de gran importancia para el análisis espectral de la composición química de la atmósfera de Júpiter.
En febrero de 1997, seis astronautas a bordo de la lanzadera espacial Discovery llevaron a cabo una misión de puesta a punto del telescopio que incluía una revisión técnica y la instalación de dos poderosos instrumentos de observación. Los espectrógrafos GHRS y FOS fueron retirados y sustituidos por estos dos nuevos instrumentos: el espectrógrafo STIS (Space Telescope Imaging Spectrograph) y la cámara NICMOS (Near Infrarred Camera and Multi-Object Spectrometer). Al contrario que sus predecesores, GHRS y FOS, que observaban de una vez un único punto en el espacio, el espectrógrafo STIS podía observar una línea continua.
La cámara NICMOS fue el primer instrumento del Hubble que trabajó en la región infrarroja del espectro electromagnético. La radiación infrarroja, al contrario que la visible, no es reflejada ni absorbida por la materia y se detecta normalmente en forma de calor radiante; por ello, esta cámara permite contemplar objetos calientes, como estrellas en proceso de formación, que se encuentran en el interior de nubes de polvo y gas.
En 1998, los nuevos instrumentos del telescopio espacial Hubble captaron imágenes del choque entre dos galaxias. También recogieron la luz emitida por galaxias situadas a más de 12.000 millones de años luz; esta información permitió a los astrónomos aumentar la estimación del número de galaxias en varios miles de millones. Ese mismo año, el Hubble mostró que la temperatura de Tritón, un satélite de Neptuno, había aumentado 2 ºC desde que lo visitó la sonda estadounidense Voyager en 1989.
Tres de los seis giróscopos del sistema de guiado del telescopio dejaron de funcionar en abril de 1999, y unos meses más tarde falló otro. En diciembre de ese mismo año, la NASA envió una nueva misión de asistencia que completó con éxito las reparaciones.
En marzo de 2002, siete astronautas a bordo de la lanzadera espacial Columbia llegaron al telescopio espacial Hubble en otra misión de mantenimiento y puesta a punto, que incluía la instalación de una nueva y potente cámara, la ACS (Advanced Camera for Surveys). También se reemplazaron los paneles solares del telescopio, se arreglaron desperfectos de la cubierta aislante y se instaló una unidad de refrigeración que reactivó la cámara NICMOS, que había dejado de funcionar a finales de 1998. Las primeras imágenes obtenidas por la ACS pusieron de manifiesto el aumento de resolución y sensibilidad de esta cámara respecto de la antigua WFPC2.
Otras observaciones realizadas por el Hubble, permitieron también, en abril de 2002, hacer una estimación bastante fiable de la edad del Universo: unos 14.000 millones de años, con un margen de error de 500 millones.
En agosto de 2004 dejó de funcionar el espectrógrafo STIS y en enero de 2007 falló la cámara ACS, pero el resto de instrumentos del Hubble continúa funcionando correctamente. Está previsto que la quinta y última misión de mantenimiento del telescopio se efectúe en 2008, y que su sucesor, el telescopio espacial James Webb (nombrado así en honor a este antiguo director de la NASA), sea lanzado en 2013.

Satélite artificial




Satélite artificial, cualquiera de los objetos puestos en órbita alrededor de la Tierra con gran variedad de fines, científicos, tecnológicos y militares. El primer satélite artificial, el Sputnik 1, fue lanzado por la Unión Soviética el 4 de octubre de 1957. El primer satélite de Estados Unidos fue el Explorer 1, lanzado el 31 de enero de 1958, y resultó útil para el descubrimiento de los cinturones de radiación de la Tierra. En los años siguientes se lanzaron varios cientos de satélites, la mayor parte desde Estados Unidos y desde la antigua URSS, hasta 1983, año en que la Agencia Espacial Europea comenzó sus lanzamientos desde un centro espacial en la Guayana Francesa. El 27 de agosto de 1989 se utilizó un cohete privado para lanzar un satélite por primera vez. El cohete, construido y lanzado por una compañía de Estados Unidos, colocó un satélite inglés de difusión televisiva en órbita geosíncrona.
Desde el Sputnik se han lanzado miles de satélites artificiales. En la actualidad hay satélites de comunicaciones, navegación, militares, meteorológicos, de estudio de recursos terrestres y científicos. Estos últimos se utilizan para estudiar la alta atmósfera, el firmamento, o para probar alguna ley física.
Los satélites de comunicación se emplean para la transmisión de datos digitales e imágenes de televisión y para la comunicación telefónica. Los satélites meteorológicos fotografían la Tierra a intervalos regulares en la luz visible y en el infrarrojo, y proporcionan datos a las estaciones meteorológicas de la Tierra, para la predicción de las condiciones atmosféricas de todo el mundo. Los satélites de navegación permiten determinar posiciones en el mar y en tierra, y ayudan también a la navegación en la localización de hielos y trazado de corrientes oceánicas. Existen sistemas de navegación por satélite que utilizan señales de varios satélites, proporcionando así localizaciones más precisas. El Sistema de Posicionamiento Global (GPS) de Estados Unidos, basado en 24 satélites, permite determinar la posición, la velocidad y el tiempo 24 horas al día en cualquier lugar del mundo. Su primer satélite fue lanzado en 1978. Otro sistema de navegación por satélite, de uso casi exclusivamente militar, es el sistema GLONASS, lanzado por la antigua Unión Soviética. Hacia 2010 entrará en funcionamiento Galileo, el sistema europeo de navegación, que constará de 30 satélites. En diciembre de 2005 se lanzó el Giove-A, el primer satélite de prueba de este sistema.
Los instrumentos astronómicos colocados a bordo de los satélites se utilizan para llevar a cabo observaciones imposibles de realizar desde la Tierra debido a la absorción de radiación de la atmósfera. Con el empleo de detectores y telescopios de rayos X se han descubierto un gran número de fuentes de rayos X. También es posible la observación de la radiación ultravioleta y la detección de los rayos gamma emitidos por los objetos celestes. En 1983, con el satélite IRAS de astronomía infrarroja, los astrónomos hicieron las primeras observaciones detalladas del núcleo de nuestra galaxia.
Los satélites artificiales se alimentan mediante células solares (véase Célula fotoeléctrica), mediante baterías que se cargan con las células solares y, en algunos casos, mediante generadores nucleares, en los que el calor producido por la desintegración de los radioisótopos se convierte en energía eléctrica. Los satélites están equipados con transmisores de radio para enviar datos (véase Telemetría), con radiorreceptores y circuitos electrónicos de almacenamiento de datos, y con equipos de control como sistemas de radar y de guía para el seguimiento de estrellas.
Los satélites se colocan en órbita mediante cohetes de etapas múltiples, también denominados lanzadores. Para ello, la NASA desarrolló el proyecto Lanzadera Espacial y la Agencia Espacial Europea el programa Ariane. La República Popular China desarrolló el lanzador Larga Marcha, mucho más barato que cualquiera de los anteriores.

Microscopio





Microscopio, cualquiera de los distintos tipos de instrumentos que se utilizan para obtener una imagen aumentada de objetos minúsculos o detalles muy pequeños de los mismos.

MICROSCOPIO ÓPTICO
El tipo de microscopio más utilizado es el microscopio óptico, que se sirve de la luz visible para crear una imagen aumentada del objeto. El microscopio óptico más simple es la lente convexa doble con una distancia focal corta. Estas lentes pueden aumentar un objeto hasta 15 veces. Por lo general, se utilizan microscopios compuestos, que disponen de varias lentes con las que se consiguen aumentos mayores. Algunos microscopios ópticos pueden aumentar un objeto por encima de las 2.000 veces.
El microscopio compuesto consiste en dos sistemas de lentes, el objetivo y el ocular, montados en extremos opuestos de un tubo cerrado. El objetivo está compuesto de varias lentes que crean una imagen real aumentada del objeto examinado. Las lentes de los microscopios están dispuestas de forma que el objetivo se encuentre en el punto focal del ocular. Cuando se mira a través del ocular se ve una imagen virtual aumentada de la imagen real. El aumento total del microscopio depende de las distancias focales de los dos sistemas de lentes.
El equipamiento adicional de un microscopio consta de un armazón con un soporte que sostiene el material examinado y de un mecanismo que permite acercar y alejar el tubo para enfocar la muestra. Los especímenes o muestras que se examinan con un microscopio son transparentes y se observan con una luz que los atraviesa; se suelen colocar sobre un rectángulo fino de vidrio. El soporte tiene un orificio por el que pasa la luz. Bajo el soporte se encuentra un espejo que refleja la luz para que atraviese el espécimen. El microscopio puede contar con una fuente de luz eléctrica que dirige la luz a través de la muestra.
La fotomicrografía, que consiste en fotografiar objetos a través de un microscopio, utiliza una cámara montada por encima del ocular del microscopio. La cámara suele carecer de objetivo, ya que el microscopio actúa como tal. El término microfotografía, utilizado a veces en lugar de fotomicrografía, se refiere a una técnica de duplicación y reducción de fotografías y documentos a un tamaño minúsculo para guardarlos en un archivo.
Los microscopios que se utilizan en entornos científicos cuentan con varias mejoras que permiten un estudio integral del espécimen. Dado que la imagen de la muestra está ampliada muchas veces e invertida, es difícil moverla de forma manual. Por ello los soportes de los microscopios científicos de alta potencia están montados en una plataforma que se puede mover con tornillos micrométricos. Algunos microscopios cuentan con soportes giratorios. Todos los microscopios de investigación cuentan con tres o más objetivos montados en un cabezal móvil que permite variar la potencia de aumento.
MICROSCOPIOS ÓPTICOS ESPECIALES
Hay diversos microscopios ópticos para funciones especiales. Uno de ellos es el microscopio estereoscópico, que no es sino un par de microscopios de baja potencia colocados de forma que convergen en el espécimen. Estos instrumentos producen una imagen tridimensional.
El microscopio de luz ultravioleta utiliza el rango ultravioleta del espectro luminoso en lugar del rango visible, bien para aumentar la resolución con una longitud de onda menor o para mejorar el detalle absorbiendo selectivamente distintas longitudes de onda de la banda ultravioleta. Dado que el vidrio no transmite las longitudes de onda más cortas de la luz ultravioleta, los elementos ópticos de estos microscopios están hechos con cuarzo, fluorita o sistemas de espejos aluminizados. Además, dado que la radiación ultravioleta es invisible, la imagen se muestra con fosforescencia (véase Luminiscencia), en fotografía o con un escáner electrónico. El microscopio de luz ultravioleta se utiliza en la investigación científica.
El microscopio petrográfico o de polarización se utiliza para identificar y estimar cuantitativamente los componentes minerales de las rocas ígneas y las rocas metamórficas. Cuenta con un prisma de Nicol u otro tipo de dispositivo para polarizar la luz que pasa a través del espécimen examinado (véase Óptica: Polarización de la luz). Otro prisma de Nicol o analizador determina la polarización de la luz que ha pasado a través del espécimen. El microscopio tiene un soporte giratorio que indica el cambio de polarización acusado por el espécimen.
El microscopio en campo oscuro utiliza una luz muy intensa en forma de un cono hueco concentrado sobre el espécimen. El campo de visión del objetivo se encuentra en la zona hueca del cono de luz y sólo recoge la luz que se refleja en el objeto. Por ello, las porciones claras del espécimen aparecen como un fondo oscuro y los objetos minúsculos que se están analizando aparecen como una luz brillante sobre el fondo. Esta forma de iluminación se utiliza para analizar elementos biológicos transparentes y sin manchas, invisibles con iluminación normal.
El microscopio de fase ilumina el espécimen con un cono hueco de luz, como en el microscopio en campo oscuro. Sin embargo, en el microscopio de fase el cono de luz es más estrecho y entra en el campo de visión del objetivo, que contiene un dispositivo en forma de anillo que reduce la intensidad de la luz y provoca un cambio de fase de un cuarto de la longitud de onda. Este tipo de iluminación provoca variaciones minúsculas en el índice de refracción de un espécimen transparente, haciéndolo visible. Este tipo de microscopio es muy útil a la hora de examinar tejidos vivos, por lo que se utiliza con frecuencia en biología y medicina.
Entre los microscopios avanzados se encuentra el microscopio de campo cercano, con el que se pueden ver detalles algo menores a la longitud de onda de la luz. Se hace pasar un haz de luz a través de un orificio diminuto y se proyecta a través del espécimen a una distancia equivalente a la mitad del diámetro del orificio, formando una imagen completa.
MICROSCOPIO ELECTRÓNICO
La potencia amplificadora de un microscopio óptico está limitada por la longitud de onda de la luz visible. El microscopio electrónico utiliza electrones para iluminar un objeto. Dado que los electrones tienen una longitud de onda mucho menor que la de la luz, pueden mostrar estructuras mucho más pequeñas. La longitud de onda más corta de la luz visible es de alrededor de 4.000 angstroms (1 ángstrom equivale a 0,0000000001 metros). La longitud de onda de los electrones que se utilizan en los microscopios electrónicos es de alrededor de 0,5 angstroms.
Todos los microscopios electrónicos cuentan con varios elementos básicos. Disponen de un cañón de electrones que emite los electrones que chocan contra el espécimen, creando una imagen aumentada. Se utilizan lentes magnéticas para crear campos que dirigen y enfocan el haz de electrones, ya que las lentes convencionales utilizadas en los microscopios ópticos no funcionan con los electrones. El sistema de vacío es una parte relevante del microscopio electrónico. Los electrones pueden ser desviados por las moléculas del aire, de forma que tiene que hacerse un vacío casi total en el interior de un microscopio de estas características. Por último, todos los microscopios electrónicos cuentan con un sistema que registra o muestra la imagen que producen los electrones.
Hay dos tipos básicos de microscopios electrónicos: el microscopio electrónico de transmisión (Transmission Electron Microscope, TEM) y el microscopio electrónico de barrido (Scanning Electron Microscope, SEM). Un TEM dirige el haz de electrones hacia el objeto que se desea aumentar. Una parte de los electrones rebotan o son absorbidos por el objeto y otros lo atraviesan formando una imagen aumentada del espécimen. Para utilizar un TEM debe cortarse la muestra en capas finas, no mayores de un par de miles de angstroms. Se coloca una placa fotográfica o una pantalla fluorescente detrás del objeto para registrar la imagen aumentada. Los microscopios electrónicos de transmisión pueden aumentar un objeto hasta un millón de veces.
Un microscopio electrónico de barrido crea una imagen ampliada de la superficie de un objeto. No es necesario cortar el objeto en capas para observarlo con un SEM, sino que puede colocarse en el microscopio con muy pocos preparativos. El SEM explora la superficie de la imagen punto por punto, al contrario que el TEM, que examina una gran parte de la muestra cada vez. Su funcionamiento se basa en recorrer la muestra con un haz muy concentrado de electrones, de forma parecida al barrido de un haz de electrones por la pantalla de una televisión. Los electrones del haz pueden dispersarse al alcanzar la muestra o provocar la aparición de electrones secundarios. Los electrones dispersados y los secundarios son recogidos y contados por un dispositivo electrónico situado a los lados del espécimen. Cada punto leído de la muestra corresponde a un píxel en un monitor de televisión. Cuanto mayor sea el número de electrones contados por el dispositivo, mayor será el brillo del píxel en la pantalla. A medida que el haz de electrones barre la muestra, se presenta toda la imagen de la misma en el monitor. Los microscopios electrónicos de barrido pueden ampliar los objetos 100.000 veces o más. Este tipo de microscopio es muy útil porque, al contrario que los TEM o los microscopios ópticos, produce imágenes tridimensionales realistas de la superficie del objeto.
Se han desarrollado otros tipos de microscopios electrónicos. Un microscopio electrónico de barrido y transmisión (Scanning Transmission Electron Microscope, STEM) combina los elementos de un SEM y un TEM, y puede mostrar los átomos individuales de un objeto. El microanalizador de sonda de electrones, un microscopio electrónico que cuenta con un analizador de espectro de rayos X, puede analizar los rayos X de alta energía que produce el objeto al ser bombardeado con electrones. Dado que la identidad de los diferentes átomos y moléculas de un material se puede conocer utilizando sus emisiones de rayos X, los analizadores de sonda de electrones no sólo proporcionan una imagen ampliada de la muestra, como hace un microscopio electrónico, sino que suministra también información sobre la composición química del material.
MICROSCOPIO DE SONDA DE BARRIDO
En los microscopios de sonda de barrido se utiliza una sonda que recorre la superficie de una muestra, proporcionando una imagen tridimensional de la red de átomos o moléculas que la componen. La sonda es una afilada punta de metal que puede tener un grosor de un solo átomo en su extremo. Un tipo importante de microscopio de sonda de barrido es el microscopio túnel de barrido (siglas en inglés de Scanning Tunnelling Microscope, STM) desarrollado en 1981. Este microscopio utiliza un fenómeno de la física cuántica, denominado efecto túnel, para proporcionar imágenes detalladas de sustancias conductoras de electricidad. La sonda se coloca a una distancia de pocos angstroms de la superficie del material y se aplica un voltaje pequeño entre la superficie y la sonda. A causa de la poca distancia entre el material y la sonda, algunos electrones se escapan a través del hueco, generando una corriente. La magnitud de la corriente del efecto túnel depende de la distancia entre la superficie y la sonda. El flujo de corriente es mayor cuando la sonda se acerca al material y disminuye cuando se aleja. A medida que el mecanismo de barrido mueve la sonda por encima de la superficie, se ajusta de modo automático la altura de la sonda para mantener constante la corriente del efecto túnel. Estos ajustes minúsculos permiten dibujar las ondulaciones de la superficie. Después de muchas pasadas hacia adelante y hacia atrás se utiliza una computadora para crear una representación tridimensional del material.
Otro tipo de microscopio de sonda de barrido es el microscopio de fuerza atómica (Atomic Force Microscope, AFM), que no emplea la corriente de efecto túnel y que, por tanto, se puede utilizar también en materiales no conductores. A medida que la sonda se mueve a lo largo de la superficie de la muestra los electrones de la sonda de metal son repelidos por las nubes electrónicas de los átomos de la misma. La altura de la sonda se ajusta de modo automático para mantener constante la fuerza de repulsión. Un sensor registra el movimiento ascendente y descendente de la sonda y entrega la información a una computadora, que a su vez la utiliza para dibujar una imagen tridimensional de la superficie del espécimen.

Máquina analítica




Máquina analítica, máquina calculadora mecánica inventada por el matemático y científico británico Charles Babbage en 1833, de la cual sólo se construyó una pequeña parte. La máquina analítica, aunque concebida mucho tiempo antes de que surgiese la tecnología electrónica, debía ser capaz de almacenar instrucciones, realizar operaciones matemáticas y utilizar tarjetas perforadas como sistema de almacenamiento permanente.

Estación Espacial Internacional




La primera tripulación permanente de la ISS, compuesta por un estadounidense y dos rusos, llegó a la Estación el 2 de noviembre de 2000. Cada una de las cinco tripulaciones siguientes estuvo también formada por tres astronautas; la séptima, cuya llegada a la Estación se retrasó por el accidente del Columbia en 2003, se vio reducida a dos astronautas por este mismo motivo. Las naves rusas Soyuz fueron entonces las encargadas del traslado de los astronautas hasta la Estación y de su regreso a la Tierra. La disminución de suministros debida a la menor capacidad tanto de las naves Soyuz como de las Progress (las únicas que viajaron a la ISS en ausencia de los transbordadores), fue la causa principal de que la Estación se mantuviera en estado de mínima actividad hasta que se reanudaron los vuelos de los transbordadores. La misión del Discovery en julio de 2006 permitió a la Estación volver a contar con tripulaciones permanentes de tres astronautas.

Astronáutica




Astronáutica, ciencia e ingeniería de los viajes espaciales, tripulados o no. La exploración del espacio o astronáutica es una ciencia interdisciplinaria que se apoya en conocimientos de otros campos, como física, astronomía, matemáticas, química, biología, medicina, electrónica y meteorología.
Las sondas espaciales han aportado una enorme cantidad de datos científicos sobre la naturaleza y el origen del Sistema Solar y del Universo (véase Cosmología). Los satélites situados en órbita terrestre han contribuido a mejorar las comunicaciones, la predicción del tiempo, la ayuda a la navegación y el reconocimiento de la superficie terrestre para la localización de recursos minerales y con fines militares.
La era espacial y la astronáutica práctica arrancan con el lanzamiento del Sputnik 1 por la Unión de Repúblicas Socialistas Soviéticas (URSS) en octubre de 1957, y con el del Explorer 1 por Estados Unidos en enero de 1958. En octubre de 1958 se creó en Estados Unidos la NASA. En las dos décadas siguientes se llegaron a lanzar más de 1.600 naves espaciales de todo tipo, la mayoría destinadas a orbitar nuestro planeta. Sobre la superficie de la Luna han estado dos docenas de hombres, que han regresado después a la Tierra. En el año 2000 había ya unos 9.000 objetos (con diámetros superiores a 10 cm) girando alrededor de la Tierra, en su mayoría restos de cohetes y equipos de sus fases de lanzamiento, y otros materiales semejantes.
FÍSICA DEL ESPACIO
El límite entre la atmósfera terrestre y el espacio exterior es difuso y no está bien definido. Al disminuir gradualmente la densidad del aire con la altitud, las capas superiores de la atmósfera son tan tenues que se confunden con el espacio. A 30 km sobre el nivel del mar, la presión barométrica es un octavo de la presión a nivel del mar. A 60 km sobre el nivel del mar es 1/3.600; a 90 km es 1/400.000. A una altitud de 200 km hay aún la suficiente masa atmosférica como para frenar los satélites artificiales, debido a la resistencia aerodinámica, por lo que los satélites de larga vida han de alcanzar órbitas de gran altitud.
La radiación en el espacio
Tradicionalmente se ha asociado el espacio con el vacío. Sin embargo, el espacio está ocupado por cantidades pequeñas de gases como el hidrógeno, y pequeñas cantidades de polvo de meteoroides y cometas. Además es atravesado por rayos X, radiación ultravioleta, radiación luminosa y rayos infrarrojos procedentes del Sol. Hay también rayos cósmicos, compuestos principalmente de protones, partículas alfa y núcleos pesados. Véase también Astronomía.
Gravitación
La ley de la gravitación universal establece que cada partícula de la materia del Universo atrae a otra partícula con una fuerza directamente proporcional al producto de sus masas, e inversamente proporcional al cuadrado de la distancia que las separa. En consecuencia, la atracción gravitacional que ejerce la Tierra sobre el resto de los cuerpos (incluidas las naves y satélites espaciales) disminuye a medida que se alejan de la Tierra. No obstante, el campo gravitacional se extiende hasta el infinito y la gravedad no desaparece por grande que sea la distancia.
Las fuerzas aerodinámicas generadas por las estructuras de un avión (por ejemplo, las alas), lo sustentan en el aire frente a la fuerza de la gravedad, pero un vehículo espacial no puede mantenerse de este modo debido a la ausencia de aire en el espacio. Por ello, las naves deben entrar en órbita para poder permanecer en el espacio. Los aviones que vuelan por la atmósfera terrestre se sirven de propulsores para moverse y de alas para maniobrar, pero las naves espaciales no pueden hacerlo por la ausencia de aire. Los vehículos espaciales dependen de los cohetes de reacción para impulsarse y maniobrar, según las leyes de Newton sobre el movimiento (véase Mecánica). Cuando una nave dispara un cohete en una determinada dirección, se produce una reacción de movimiento de la nave en sentido contrario.
SERES HUMANOS EN EL ESPACIO
El espacio es un medio hostil para el ser humano. No contiene aire ni oxígeno, por lo que se hace imposible respirar. Si no se lleva la protección adecuada, el vacío del espacio puede matar por descompresión a una persona en pocos segundos. En el espacio la temperatura a la sombra de un planeta puede alcanzar valores cercanos al cero absoluto. En cambio, bajo radiación solar directa, las temperaturas son muy elevadas. Las radiaciones de la energía solar y cósmica del espacio pueden resultar mortales sin la protección de la atmósfera. Las condiciones ambientales pueden llegar a afectar a los instrumentos de las naves espaciales, por lo que se tienen en cuenta a la hora de diseñarlos y fabricarlos. Se han efectuado numerosos experimentos sobre ingravidez a largo plazo para averiguar sus efectos en las tripulaciones de las naves espaciales (véase Medicina aeroespacial).
Hay varias formas de protegerse de las condiciones ambientales del espacio. Los astronautas viajan en cabinas cerradas herméticamente, o dentro de trajes especiales, provistos de aire u oxígeno a presión que reproducen las condiciones de la Tierra. La temperatura y la humedad se controlan por aire acondicionado. Las superficies de la nave están diseñadas para regular la cantidad de radiación de calor que absorbe o refleja la nave. Los viajes espaciales se programan para evitar los intensos cinturones de radiación que rodean la Tierra. En los futuros viajes interplanetarios serán necesarias fuertes medidas de protección frente a las tormentas de radiación solar. En los viajes de larga duración y en órbitas terrestres prolongadas los efectos de la falta de gravedad pueden reducirse mediante la rotación de la nave, que reproduce la gravedad de forma artificial. Es por ello que las naves espaciales se podrían construir en forma de gran rueda que gira despacio sobre su eje, o como una pesa que rota sobre sí misma.
HISTORIA
La humanidad ha soñado con viajes espaciales miles de años antes de que éstos empezaran a llevarse a cabo. Pruebas de ello las encontramos en los textos babilónicos; alrededor del año 4000 a.C. Dédalo e Ícaro, antiguos mitos griegos, también representan el deseo universal de volar. Ya en el siglo II d.C. el escritor griego Luciano escribió sobre un imaginario viaje a la Luna. A principios del siglo XVII, el astrónomo alemán Johannes Kepler escribió una sátira científica sobre un viaje a la Luna. El filósofo y escritor francés Voltaire cuenta en su obra Micromegas (1752) los viajes de unos habitantes de Sirio y de Saturno. Y en 1865, el escritor francés Jules Verne describió un viaje espacial en su famosa novela De la Tierra a la Luna. El sueño del vuelo espacial continuó en el siglo XX, especialmente en los escritos del inglés H. G. Wells, que en 1898 publicó La guerra de los mundos y en 1901 Los primeros hombres en la Luna. En los últimos tiempos la ciencia ficción ha desarrollado nuevas fantasías en torno a los vuelos espaciales.
4. Primeras teorías
Durante siglos, cuando los viajes espaciales eran tan sólo una fantasía, astrónomos, químicos, matemáticos, meteorólogos y físicos desarrollaron un concepto del Sistema Solar, del universo estelar, de la atmósfera terrestre y del posible entorno espacial. En los siglos VII y VI a.C. los filósofos griegos Tales de Mileto y Pitágoras se dieron cuenta de que la Tierra era una esfera. En el siglo III a.C. el astrónomo Aristarco de Samos afirmó que la Tierra giraba alrededor del Sol. Hiparco de Nicea, también griego, recogió datos sobre las estrellas y los movimientos de la Luna en el siglo II a.C. Tolomeo de Alejandría, en el siglo II de la era cristiana, en su concepción cósmica conocida como sistema de Tolomeo, situó la Tierra en el centro del Sistema Solar.
Descubrimientos científicos
Tuvieron que pasar 1.400 años hasta que el astrónomo polaco Nicolás Copérnico descubrió que los planetas, incluida la Tierra, giraban alrededor del Sol (véase Sistema de Copérnico). Más tarde, en el siglo XVI, las observaciones del astrónomo danés Tycho Brahe sirvieron de base para la formulación de las leyes del movimiento planetario por Johannes Kepler. Galileo, Edmund Halley, William Herschel y James Jeans fueron otros astrónomos que hicieron importantes contribuciones a la astronomía.
Físicos y matemáticos también ayudaron al desarrollo de la astronomía. En 1654, el físico alemán Otto von Guericke demostró que el vacío podía mantenerse, refutando la antigua teoría de que la naturaleza 'aborrecía' el vacío. Más tarde, en el siglo XVII, Newton formuló las leyes de la gravitación universal y del movimiento, que establecieron los principios básicos que regulan la propulsión y el movimiento orbital de las modernas naves espaciales.
A pesar de los grandes descubrimientos de la teoría científica en épocas anteriores, los viajes espaciales sólo fueron posibles en el siglo XX, cuando se desarrollaron los actuales sistemas de propulsión por cohete, guiado y control de naves espaciales.
Propulsión por cohetes
Las técnicas de propulsión por cohetes se desarrollaron hace mucho tiempo. Antiguamente se usaba pólvora como combustible, de un modo muy parecido a los fuegos artificiales. Se tienen noticias de que en 1232, en China, la ciudad de Kaifeng se defendió de los ataques de los mongoles con la ayuda de cohetes. Desde el renacimiento hay numerosas referencias al uso de cohetes, unas veces real y otras sólo en proyectos, en las batallas que se libraron en Europa. Ya en el año 1804 el Ejército británico creó un cuerpo equipado con cohetes que podían alcanzar una distancia de unos 1.830 metros.
En Estados Unidos, un profesor de física de la Universidad de Clark, Robert Hutchings Goddard, fue el pionero en la propulsión por cohetes. Comenzó experimentando con combustibles líquidos para cohetes en la década de 1920, y realizó su primer lanzamiento con éxito el 16 de marzo de 1926. Durante esa época ya se investigaba en varios lugares del mundo sobre cohetes y naves espaciales. Alrededor del año 1890, Herman Ganswindt, un estudiante de Derecho de nacionalidad alemana, concibió una nave espacial propulsada con combustible sólido, que demostraba sus avanzados conocimientos sobre el problema de la estabilidad. Konstantín Eduardovich Tsiolkovski, un maestro de escuela ruso, publicó en 1903 Un cohete en el espacio cósmico, en donde proponía el uso de combustibles líquidos para las naves espaciales. En 1923, un matemático y físico alemán llamado Hermann Oberth, publicó Die Rakete zu den Planetenräume (Los cohetes en el espacio interplanetario). Este libro tuvo su continuación en Die Erreichbarkeit der Himmelskörper (La posibilidad de llegar a los cuerpos celestes), publicado en 1925 por el arquitecto alemán Walter Hohmann, que contenía los primeros cálculos detallados de las órbitas interplanetarias.
La II Guerra Mundial influyó en el desarrollo de cohetes suborbitales de largo alcance. Estados Unidos, la URSS, Gran Bretaña y Alemania desarrollaron simultáneamente cohetes para usos militares. Los alemanes fueron los que tuvieron más éxito y desarrollaron el V–2 (un cohete de combustible líquido con el que bombardearon Londres) en Peenemünde, un pueblo cercano a la costa báltica. Al acabar la guerra, Estados Unidos conservó algunos V–2 que emplearon para la investigación de los vuelos verticales. Algunos ingenieros alemanes se trasladaron a la URSS al terminar la guerra, pero los expertos en cohetes, entre ellos Walter Dornberger y Wernher von Braun, acabaron en Estados Unidos (véase Misiles teledirigidos).
NAVES ESPACIALES
Los artefactos espaciales no tripulados pueden ser de diversos tamaños, desde unos centímetros hasta varios metros de diámetro, y tener muchas formas diferentes, según el uso para el que estén construidos. Las naves no tripuladas cuentan con equipos de radio para transmitir información a la Tierra y para señalar su posición en el espacio.
Las naves tripuladas han de cumplir con requisitos más complicados debido a las necesidades de la propia tripulación. Están diseñadas con equipos capaces de proveer de aire, agua y comida a los tripulantes, equipos de navegación y control, asientos y compartimentos para dormir y equipos de transmisión para enviar y recibir información. Una característica de las naves tripuladas es la pantalla o escudo térmico que las recubre para protegerlas del calor que se produce al reentrar en la atmósfera. Véase Lanzamiento y aterrizaje, más abajo.
Propulsión
Los cohetes que lanzan y propulsionan las naves espaciales se pueden dividir en dos grandes grupos: de combustible sólido, que emplean productos químicos para la combustión, igual que la pólvora, y de combustible líquido, que llevan en tanques separados combustibles líquidos y agentes oxidantes. La mayoría de los cohetes lanzados por Estados Unidos tenían varias fases diferentes, cada una de ellas propulsada por su propio combustible. Una vez consumido el combustible, toda la fase se separaba de la nave para quedar flotando en el espacio.
Dado que la tecnología usada para el lanzamiento de naves espaciales está en estrecha relación con la de los misiles balísticos, desde 1957 hasta 1965 sólo Estados Unidos y la URSS fueron capaces de lanzar satélites. En años posteriores, Francia, Japón, India y China lanzaron satélites terrestres propios, con tecnologías cada vez más sofisticadas. En 1984, los trece países miembros de la Agencia Espacial Europea comenzaron su Programa Ariane de lanzamientos desde el centro espacial de Kourou, en la Guayana Francesa. Sin embargo, Estados Unidos y la URSS siguieron siendo los únicos países con capacidad para lanzar al espacio naves grandes y pesadas, requisito necesario para llevar tripulaciones.
Lanzamiento y aterrizaje
Las naves espaciales se lanzan desde plataformas construidas al efecto, en donde se colocan e inspeccionan cuidadosamente las naves y los cohetes propulsores antes del lanzamiento. Las operaciones son supervisadas por ingenieros y técnicos en un puesto de control situado en las inmediaciones. Cuando todo está listo, se encienden los motores del cohete y la nave se eleva hacia el espacio.
La reentrada en la atmósfera presenta el problema de ralentizar la velocidad de la nave para evitar su destrucción a causa del calor debido al rozamiento. Los programas estadounidenses Mercury, Géminis y Apolo superaron esta dificultad protegiendo la superficie de la nave con un escudo térmico, construido con materiales plásticos, metálicos y cerámicos, que se funden y volatilizan al entrar en la atmósfera, disipando el calor sin daños para la nave y sus tripulantes. El escudo térmico de los transbordadores o lanzaderas espaciales está construido a base de chapas de cerámica soldadas individualmente al casco de la nave. Antes de la aparición de estos vehículos capaces de aterrizar en una pista (véase Transbordador espacial, más abajo), las naves estadounidenses tripuladas caían sobre el mar para amortiguar el impacto. Los astronautas y su cápsula eran recogidos enseguida por los helicópteros y llevados a bordo de unidades navales que se encontraban a la espera. Por el contrario, los astronautas soviéticos aterrizaban sobre tierra firme en distintas partes de Siberia.
En órbita alrededor de la Tierra
Los satélites que giran en la órbita terrestre pueden hacerlo en círculo o en elipse. Los satélites artificiales en órbita circular se mueven a una velocidad constante. Sin embargo, a mayor altitud se mueven a menor velocidad respecto a la superficie de la Tierra. Cuando mantienen una altura de 35.800 km sobre el ecuador los satélites son geoestacionarios y se mueven en una órbita geosíncrona, es decir, justo a la misma velocidad que la Tierra, de manera que se mantienen en un mismo punto fijo sobre el ecuador. La mayoría de los satélites de comunicaciones están situados en este tipo de órbitas. Véase Comunicaciones vía satélite.
En las órbitas elípticas la velocidad varía, siendo mayor en el perigeo (altitud mínima) y menor en el apogeo (altitud máxima). Las órbitas elípticas pueden descansar en cualquier plano que pase por el centro de la Tierra. Las órbitas polares descansan en un plano que pasa por los polos norte o sur; esto quiere decir que atraviesan el eje de rotación de la Tierra. Las órbitas ecuatoriales descansan en un plano que atraviesa el ecuador. El ángulo entre el plano orbital y el ecuador se denomina inclinación de la órbita.
La Tierra gira una vez cada 24 horas vista desde un satélite en órbita polar. Los satélites meteorológicos en órbita polar, que llevan cámaras de televisión y de infrarrojos, pueden observar las condiciones meteorológicas de todo el globo, de polo a polo, en un solo día. Las órbitas con otro tipo de inclinación cubren un área menor de la Tierra, y no alcanzan algunas zonas cercanas a los polos.
Mientras un objeto permanezca en órbita en el espacio, seguirá orbitando sin necesidad de propulsión dado que no tiene fuerza de rozamiento que ralentice su velocidad. Si toda la órbita, o una parte de ella, atraviesa la atmósfera terrestre, el objeto perderá velocidad por rozamiento aerodinámico con el aire. Este fenómeno provocará su caída gradual hacia altitudes más bajas, hasta que el objeto entre en la atmósfera y se desintegre como un meteoro.
PROGRAMAS ESPACIALES NO TRIPULADOS
Una larga historia de mitos, sueños, novelas, ciencia y tecnología culminó con el lanzamiento del primer satélite artificial a la órbita terrestre, el Sputnik 1, por la URSS el 4 de octubre de 1957.
 Primeros satélites artificiales
El Sputnik 1 era una esfera de aluminio de 58 cm de diámetro y 83 kg. Tardaba 96,2 minutos en dar la vuelta a la Tierra. Describía una órbita elíptica y alcanzaba su apogeo a una altura de 946 km, y su perigeo a 227 km. Contaba con instrumentos que durante 21 días enviaron información a la Tierra sobre radiación cósmica, meteoroides y sobre la densidad y la temperatura de las capas superiores de la atmósfera. Al cabo de 57 días el satélite entró en la atmósfera terrestre y se destruyó por efecto del calor debido al rozamiento aerodinámico.
El segundo satélite artificial fue también un vehículo espacial soviético, de nombre Sputnik 2. Fue lanzado el 3 de noviembre de 1957 y llevaba a bordo un animal, la perra Laika. Realizó las primeras mediciones biomédicas en el espacio. Este satélite entró en la atmósfera terrestre destruyéndose después de 162 días de vuelo.
Mientras el Sputnik 2 todavía se encontraba en órbita, Estados Unidos lanzó con éxito su primer satélite, el Explorer 1, desde la base de cabo Cañaveral (llamado cabo Kennedy entre 1963 y 1973), en Florida, el 31 de enero de 1958. Era una nave cilíndrica de 14 kg, 15 cm de diámetro y 203 cm de longitud, que estuvo transmitiendo mediciones de radiación cósmica y micrometeoritos durante 112 días, y aportó los primeros datos desde un satélite que llevaron al descubrimiento de los cinturones de radiación de van Allen.
El 17 de marzo de 1958, Estados Unidos lanzó su segundo satélite, el Vanguard 2. Un estudio preciso de las variaciones de su órbita reveló que la Tierra estaba algo achatada por los polos. Utilizando energía solar, el satélite estuvo transmitiendo señales durante más de 6 años. Al Vanguard 2 le siguió el satélite estadounidense Explorer 3, lanzado el 26 de marzo de 1958, y el soviético Sputnik 3, lanzado el 15 de mayo de ese mismo año. Este último, de 1.327 kg, efectuó mediciones de la radiación solar, la radiación cósmica, los campos magnéticos y otros fenómenos, hasta que dejó su órbita en abril de 1960.
Misiones lunares no tripuladas
Por ser el astro más cercano a la Tierra, la Luna ha sido el objetivo de numerosas misiones espaciales. En 1958 fracasaron las primeras sondas lunares enviadas por Estados Unidos y la URSS. La nave rusa Luna 2, lanzada el 12 de septiembre de 1959, alcanzó la superficie lunar 36 horas más tarde. Desde entonces, ambos países efectuaron lanzamientos con resultados diferentes. Las primeras fotografías de la cara oculta de la Luna fueron tomadas por el Luna 3, enviado al espacio por la URSS el 4 de octubre de 1959. Uno de las misiones más espectaculares fue la realizada por el Ranger 7, enviado al espacio por Estados Unidos el 28 de julio de 1964. Antes de estrellarse contra la superficie de la cara visible de la Luna, llegó a transmitir 4.316 imágenes por televisión, desde altitudes entre 1.800 km y 300 m, proporcionando a la humanidad las primeras imágenes detalladas del satélite.
El 31 de enero de 1966 la URSS lanzó el Luna 9, que consiguió realizar el primer aterrizaje sobre la Luna sin ser destruido por el impacto. Le siguió la nave estadounidense Surveyor 1, el 30 de mayo de ese año, que también realizó un aterrizaje suave en la superficie lunar, y envió a la Tierra 11.150 fotografías del satélite.
Además de la información científica recogida, gran parte del interés del programa espacial de Estados Unidos se centraba en desembarcar un hombre en la Luna. Con este propósito se llevaron a cabo varios vuelos posteriores no tripulados, como los realizados por el Surveyor 3 y Surveyor 5 en 1967. Ambas naves, después de un vuelo de dos días, enviaron a la Tierra un gran número de imágenes de televisión de la superficie lunar. El Surveyor 3 tomó muestras del suelo de la Luna que fueron examinadas por cámaras de televisión. El Surveyor 5 realizó análisis químicos de la superficie lunar, utilizando técnicas de dispersión de partículas alfa; éste fue el primer análisis sobre el terreno de un cuerpo extraterrestre.
Otros satélites lanzados para preparar el alunizaje fueron los del programa Lunar Orbiter. Entre 1966 y 1967, cinco de estos satélites dieron vueltas alrededor de la Luna obteniendo miles de fotografías. Con este material se fueron seleccionando los lugares de alunizaje previstos en el programa Apolo.
La URSS proyectó misiones lunares no tripuladas que alcanzaron la Luna y trajeron muestras de vuelta a la Tierra. La nave Luna 16, lanzada el 12 de septiembre de 1970, introdujo unos 113 g de suelo lunar en un recipiente sellado, que fue lanzado de vuelta a la Tierra y recuperado por los soviéticos. El Luna 17, lanzado el 10 de noviembre de 1970, alunizó suavemente y desplegó un vehículo automático de exploración lunar, el Lunokhod 1, que iba equipado con una cámara de televisión y baterías solares. Durante diez días lunares, este artefacto controlado desde la Tierra recorrió 10,5 km de la superficie lunar, transmitiendo imágenes por televisión y datos científicos. En febrero de 1972 el Luna 20 regresó a la Tierra con muestras lunares. El Luna 21, en enero de 1973, colocó en la Luna el vehículo Lunokhod 2. En agosto de 1976, con el Luna 24, finalizó esta serie de exploraciones lunares.
La sonda Clementine, lanzada por Estados Unidos en febrero de 1994, continuó la exploración lunar. Orbitó la Luna durante tres meses y obtuvo los primeros datos fiables de su topografía utilizando altímetros láser. A partir de unas señales de radar enviadas por la sonda, un grupo de científicos estadounidenses anunció, a finales de 1996, la posible existencia de agua helada en un cráter. En enero de 1998 la sonda Lunar Prospector de la NASA entró en órbita alrededor de la Luna. En marzo de ese mismo año los datos enviados por la nave parecían indicar la existencia de una cantidad significativa de agua en los polos del satélite. El 31 de julio de 1999 la NASA destruyó la Lunar Prospector haciéndola chocar contra la superficie lunar, con el fin de poder comprobar esta teoría. Tras dos meses y medio de análisis de los datos obtenidos por numerosos telescopios que siguieron el impacto, la organización estadounidense anunció la ausencia de indicios de agua en el satélite, si bien no descartó totalmente la hipótesis. La Lunar Prospector también investigó el campo gravitacional y el campo magnético de la Luna.
En agosto de 2002, una empresa privada estadounidense obtuvo por primera vez la aprobación del gobierno de su país para enviar una misión a la Luna. Está previsto que la nave tome imágenes de alta resolución de su superficie, desde una órbita cercana, para terminar cayendo sobre el satélite.
Satélites científicos
A medida que los sistemas de despegue de las naves espaciales (propulsadas por cohetes) y los equipos científicos se hicieron más fiables, se fueron desarrollando una gran variedad de satélites. Los científicos trataron de recopilar información y realizar estudios precisos del Sol, otras estrellas, la Tierra y del mismo espacio. La atmósfera que envuelve la Tierra impide obtener tales datos, a excepción de la escasa información que se podía conseguir por medio de globos a gran altitud.
En Estados Unidos se han lanzado numerosos satélites astronómicos. Así, desde 1962 los Observatorios Solares Orbitales (OSO, en inglés) han estudiado la radiación ultravioleta, los rayos X y los rayos gamma procedentes del Sol. Satélites pioneros han recogido datos de la radiación cósmica, el viento solar y las características electromagnéticas del espacio. Los Observatorios Astronómicos Orbitales (OAO, en inglés) han estudiado la radiación estelar, y los Observatorios Geofísicos Orbitales (OGO, en inglés) se han dedicado a conocer las interacciones entre el Sol, la Tierra y el entorno espacial. El Satélite de Astronomía de Infrarrojos (IRAS, en inglés), un proyecto anglo-estadounidense lanzado en 1983, tenía como misión realizar una cartografía del cielo. El telescopio espacial Hubble fue lanzado al espacio por la lanzadera espacial Discovery en 1990.
En 1999 se lanzaron dos telescopios de rayos X de tecnología avanzada. En julio, la NASA puso en órbita el telescopio Chandra, y en diciembre, un cohete Ariane 5 lanzó el telescopio Newton XMM de la Agencia Espacial Europea (ESA). En julio y agosto de 2000, la ESA lanzó también los cuatro satélites de la misión Cluster II, cuyo objetivo es el estudio de la magnetosfera terrestre y su interacción con el viento solar, y en octubre de 2002 la Agencia puso en órbita el observatorio de rayos gamma Integral, diseñado para estudiar los fenómenos de más alta energía del Universo.
Satélites de aplicaciones
Este tipo de satélites no tripulados son también de gran utilidad para los científicos dedicados al estudio de la Tierra. Se pueden clasificar, a grandes rasgos, en tres tipos: medioambientales, de navegación y de comunicaciones.
Los satélites medioambientales observan la Tierra y la atmósfera transmitiendo imágenes con diversos fines. Los satélites meteorológicos envían diariamente datos sobre la temperatura y formación de nubes. Un ejemplo es el Satélite Meteorológico Sincronizado (SMS), que desde una órbita geoestacionaria envía imágenes de una extensa zona de la Tierra cada 30 minutos. Dos satélites SMS pueden cubrir todo un continente y sus mares adyacentes.
Los satélites estadounidenses Landsat observan la Tierra con ayuda de escáneres ópticos multiespectrales y envían datos a las estaciones en Tierra, que se procesan en imágenes a color y suministran información muy valiosa sobre características del suelo, cantidades de hielo y agua en los mares, contaminación de las aguas costeras, salinidad y plagas de insectos en cosechas y bosques. Incluso pueden detectarse incendios forestales desde los satélites. Los estudios sobre las fallas y fracturas de la corteza terrestre facilitan a los geólogos la identificación de depósitos y yacimientos de petróleo y minerales. El SPOT (Sistema Probatorio para la Observación de la Tierra), un satélite europeo lanzado en 1985, logra transmitir imágenes de la Tierra con más detalle que los estadounidenses Landsat. Véase también Teledetección.
Los satélites de observación terrestre se utilizan en diversos países para obtener imágenes de interés militar, como explosiones nucleares en la atmósfera y en el espacio, bases de lanzamiento de misiles balísticos, así como movimientos de tropas o barcos. En la década de 1980 surgió la polémica cuando Estados Unidos se propuso desarrollar un sistema de defensa antibalística accionado con tecnología láser.
Los satélites de navegación proporcionan un punto conocido de observación de la órbita terrestre que ayuda a fijar la posición de barcos y submarinos con un margen de error de unos pocos metros. El Sistema de Posicionamiento Global (GPS), integrado por 24 satélites, suministra la posición, la velocidad y el tiempo 24 horas al día en cualquier lugar del mundo.
Estudio de los planetas
Además de la Luna, las naves espaciales han llegado a Marte y Venus, han alcanzado las proximidades de todos los planetas solares, excepto Plutón, y han llevado a cabo estudios sobre los cometas y asteroides.
Mercurio
El estudio del planeta más próximo al Sol comenzó con el viaje del Mariner 10, enviado en octubre de 1973 por Estados Unidos, en un viaje por la zona interior del Sistema Solar hacia Mercurio. Pasó cerca de Venus en febrero de 1974 y aprovechó la fuerza de gravedad de este planeta para entrar en la órbita solar. En marzo de ese año llegó a unos 692 km de Mercurio, obteniendo las primeras imágenes de su superficie llena de cráteres, parecida a la lunar. En su segunda aproximación, realizada en septiembre, detectó un campo magnético insospechado. En su tercer y último encuentro con el planeta, en marzo de 1975, el Mariner 10 se aproximó a unos 317 kilómetros.
En 2004 la NASA tiene previsto enviar una nueva misión hacia Mercurio, la sonda Messenger.
Venus
El programa de la URSS para penetrar en la densa atmósfera de Venus, cubierta de nubes, tuvo un gran éxito. El Venera 7 fue lanzado en agosto de 1970; estuvo en funcionamiento durante 23 minutos y pudo enviar datos sobre la temperatura. El Venera 8, lanzado en 1972, envió a la Tierra datos sobre la superficie del planeta y un análisis de su suelo. En octubre de 1975, el Venera 9 y el Venera 10 se posaron en la superficie durante una hora, obteniendo las primeras fotografías de la superficie venusiana. En 1978, el Venera 11 y el Venera 12 soltaron dos sondas que llegaron a Venus en diciembre. Ambos registraron una presión de 88 atmósferas y una temperatura en superficie de 460 ºC. El 1 y 5 de marzo de 1982, el Venera 13 y el Venera 14 se posaron en Venus, obteniendo imágenes de la superficie del planeta y efectuando análisis de la composición química de la atmósfera y del suelo. El 10 y el 14 de octubre de 1983, el Venera 15 y el Venera 16 entraron en la órbita de Venus y emitieron imágenes por radar. En junio de 1985, el Vega 1 y el Vega 2, de camino hacia el cometa Halley, soltaron cuatro sondas en la atmósfera venusiana.
Estados Unidos lanzó el 20 de mayo de 1978 el Pioneer Venus 1, y el 8 de agosto del mismo año el Pioneer Venus 2, que portaba cinco sondas atmosféricas, alcanzando ambos Venus el 5 y 9 de diciembre respectivamente. El primero levantó el mapa de casi toda la superficie del planeta, y las sondas del segundo analizaron la composición y movimientos en la atmósfera y su interacción con el viento solar. La sonda Magallanes fue enviada hacia Venus desde un transbordador espacial en 1989 y empezó a transmitir imágenes por radar de su superficie en agosto de 1990.
En noviembre de 2002, el Comité de Programas Científicos (SPC, siglas en inglés) de la Agencia Espacial Europea aprobó definitivamente la que será su primera misión con destino a Venus, la Venus Express, cuyo lanzamiento está previsto para 2005.
Marte
La URSS lanzó al espacio las sondas Mars 2 y Mars 3 en mayo de 1971, destruyéndose ambas por el impacto al caer en Marte, aunque antes consiguieron transmitir algunos datos. En agosto de 1973, la URSS envió los Mars 4, 5, 6 y 7, pero diversos fallos técnicos hicieron fracasar todas las misiones. En 1988 la URSS lanzó las sondas Phobos 1 y 2, que tenían previsto llegar a Fobos, la luna de Marte. La primera se perdió por un fallo humano y la segunda perdió el contacto por radio cuando estaba posándose en Fobos. La sonda rusa Mars 96, con instrumental científico ruso, europeo y estadounidense, se precipitó al océano Pacífico unas horas después de su lanzamiento en noviembre de 1996.
Como parte del programa de Estados Unidos fue lanzado el Mariner 9 en mayo de 1971; entró en la órbita de Marte y permaneció en ella desde noviembre de 1971 hasta octubre de 1972, transmitiendo fotografías hasta casi completar el cartografiado de toda la superficie del planeta. En agosto y septiembre de 1975, los Viking 1 y 2 emprendieron un viaje de once meses de duración. Ambos contaban con sistemas de aterrizaje y estaban equipados con laboratorios químicos y sistemas de detección de vida, dos cámaras de televisión en color, instrumentos de medición atmosférica y sismológica, además de un brazo mecánico accionado por control remoto desde la Tierra de tres metros de largo. Ambos ingenios estuvieron en funcionamiento durante varios años.
En 1992 se lanzó el Mars Observer, que desapareció de los radares antes de entrar en órbita alrededor de Marte. La NASA inició entonces una nueva serie de expediciones al planeta vecino con el lanzamiento de las naves no tripuladas Mars Global Surveyor, en noviembre de 1996, y Mars Pathfinder, en diciembre de ese mismo año. La sonda Mars Global Surveyor alcanzó la atmósfera de Marte en septiembre de 1997, pero un problema en uno de sus paneles solares retrasó el proceso de aerofrenado necesario para alcanzar la órbita final correcta, con lo que la toma de imágenes de alta resolución de la superficie marciana se retrasó. En junio de 1999 las mediciones realizadas por la sonda llevaron a confeccionar el primer mapa tridimensional detallado de la superficie del planeta. La nave Mars Pathfinder llegó a Marte el 4 de julio de 1997; durante el descenso, la sonda envió datos sobre la atmósfera del planeta. Transportaba un vehículo todoterreno, el pequeño robot Sojourner, que analizó las rocas y el suelo, proporcionando datos muy interesantes sobre el presente y el pasado de Marte. La misión duró casi tres meses, dos más de lo previsto.
Año y medio después, el 11 de diciembre de 1998, se inició la segunda fase del programa de exploración con el lanzamiento desde cabo Cañaveral de la Mars Climate Orbiter, primera de las dos naves que lo integraban; la segunda, la Mars Polar Lander, fue lanzada el 3 de enero de 1999. Pero ambas misiones fracasaron. La Mars Climate Orbiter desapareció el 23 de septiembre de 1999, cuando iba a entrar en órbita de Marte, y el 3 de diciembre de 1999 se perdió todo contacto con la Mars Polar Lander, cuando intentaba posarse en la superficie marciana.
La NASA reanudó su programa de viajes a Marte con el lanzamiento, el 7 de abril de 2001, de la nave no tripulada Mars Odyssey 2001, que entró en órbita del planeta en octubre del mismo año; su objetivo principal es estudiar la geología y la composición química del planeta durante un periodo de dos años y medio terrestres. El 10 de junio de 2003 se inició una nueva misión de la NASA al planeta vecino, la Mars Exploration Rover (MER), con el lanzamiento del primer vehículo todoterreno (Spirit) de los dos que constituyen la misión.
En julio de 1998, Japón lanzó la sonda Nozomi, que está previsto que llegue a Marte a principios de 2004. Problemas en una maniobra de cambio de rumbo le impidieron alcanzar el planeta en 1999, como estaba programado en un principio. Su misión principal consiste en estudiar la atmósfera superior del planeta y su interacción con el viento solar. En septiembre de 2002 se restableció la comunicación con la sonda después de que en abril del mismo año fuera alcanzada por partículas altamente energéticas procedentes del Sol, que paralizaron sus sistemas de forma temporal.
La Agencia Espacial Europea (ESA) inició su programa de exploración a Marte con el lanzamiento, el 2 de junio de 2003, de la nave no tripulada Mars Express. Está previsto que la sonda llegue al planeta en diciembre de 2003, permaneciendo en órbita unos dos años. La misión incluye también el módulo de descenso Beagle 2, que se posará en la superficie marciana y recogerá información durante unos seis meses.
Júpiter y Saturno
Las sondas estadounidenses Pioneer 10 y 11 fueron lanzadas en 1972 y 1973, pasaron a salvo por el inexplorado cinturón de asteroides situado entre las órbitas de Marte y Júpiter y continuaron hacia este último, a donde llegaron en diciembre de 1973 y de 1974. Las dos sondas, con un peso de 258 kg, pasaron a una distancia de 130.400 y 46.700 km del planeta, continuando el Pioneer 10 su viaje hacia el exterior del Sistema Solar, con lo que se convirtió en el primer artefacto lanzado al espacio interestelar. En enero de 2003 se recibió la última señal de esta sonda, cuando se encontraba a unos 12.000 millones de kilómetros de la Tierra. En febrero del mismo año se intentó de nuevo contactar con ella, pero no se obtuvo respuesta. La NASA anunció que no habría más intentos de comunicación, dando por finalizada la misión, después de 31 años de seguimiento.
En septiembre de 1979, la sonda Pioneer 11 llegó a Saturno, preparando el camino al Voyager 1 y al Voyager 2. Estos últimos, lanzados en 1977, lograron con éxito alcanzar Júpiter en marzo y julio de 1979, y realizaron numerosas mediciones y fotografías que mostraban un sistema de anillos alrededor del planeta. En noviembre de 1980 y en agosto de 1981 sobrevolaron Saturno.
En diciembre de 1995, la sonda espacial Galileo de la NASA alcanzó la órbita de Júpiter, comenzando una larga misión que incluía el estudio de la atmósfera, la magnetosfera y las lunas del planeta. Los datos enviados por la sonda indican que los anillos de Júpiter se originaron a partir de grandes cantidades de polvo producidas por el choque de meteoritos con las lunas pequeñas del planeta, y confirman la existencia de tres anillos, el último de ellos dividido en dos, uno dentro de otro.
En octubre de 1997 fue lanzada hacia Saturno la nave Cassini, que deberá entrar en órbita alrededor del planeta en el año 2004 y que recogerá datos sobre Saturno y sus satélites durante cuatro años. La sonda obtuvo la primera imagen del planeta en octubre de 2002, cuando les separaba una distancia de 285 millones de kilómetros.
Urano, Neptuno y Plutón
Después de su paso por Saturno, el Voyager 2 se dirigió a Urano. En enero de 1986 pasó a 80.000 km de distancia de este planeta cubierto de nubes, y descubrió cuatro nuevos anillos, además de diez nuevas lunas. La sonda se acercó aún más a una de las lunas, Miranda, y obtuvo imágenes asombrosas de este helado cuerpo celeste. El Voyager 2 continuó después su viaje a Neptuno, aproximándose a 5.000 km del planeta en agosto de 1989, y descubrió seis nuevas lunas antes de abandonar el Sistema Solar.
La NASA eligió, a finales de 2001, el proyecto Nuevos Horizontes para explorar Plutón, su satélite, Caronte, y el cinturón de Kuiper. Se prevé que esta misión sea lanzada en 2006 y que llegue al lejano planeta en 2015.
PROGRAMAS ESPACIALES TRIPULADOS
Un año después de obtener los primeros éxitos con pequeños satélites en 1957 y 1958, tanto la URSS como Estados Unidos comenzaron a desarrollar programas para lanzar seres humanos al espacio. Ambas potencias se sirvieron de perros y chimpancés para experimentar los efectos de la ausencia de gravedad en los seres vivos.
Los programas Vostok y Mercury
La URSS fue la primera en poner un hombre en el espacio, el cosmonauta Yuri A. Gagarin, que completó una órbita terrestre en la nave Vostok 1 el 12 de abril de 1961. En su vuelo, que duró una hora y cuarenta y ocho minutos, alcanzó un apogeo de 327 km y un perigeo de 180 km, aterrizando a salvo en Siberia. En los dos años siguientes se llevaron a cabo cinco nuevos vuelos del programa Vostok. El piloto del Vostok 6 fue Valentina Tereshkova, la primera mujer astronauta. Lanzada el 16 de junio de 1963, dio 48 vueltas alrededor de la Tierra.
Mientras tanto, el programa estadounidense Mercury, similar al soviético, seguía su desarrollo. El 5 de mayo de 1961, el capitán de corbeta de la Armada de Estados Unidos, Alan Bartlett Shepard, se convirtió en el primer astronauta estadounidense. La nave del programa Mercury, bautizada Freedom 7, describió una trayectoria balística y realizó un vuelo suborbital de 15 minutos de duración. Un vuelo similar tuvo lugar el 21 de julio, protagonizado por el capitán Grissom de las Fuerzas Aéreas estadounidenses. El 20 de febrero de 1962, el teniente coronel John Herschel Glenn, del cuerpo de Marines, se convirtió en el primer astronauta estadounidense en dar la vuelta a la Tierra, en un vuelo de tres vueltas completas. Entre 1962 y 1963 se llevaron a cabo tres vuelos más dentro del programa Mercury.
Los programas Voskhod y Gemini
El programa Voskhod era una adaptación del Vostok, modificado para acomodar dos o tres cosmonautas a bordo. El 12 de octubre de 1964 los cosmonautas Vladímir M. Komarov, Borís B. Yegorov y Konstantín P. Feoktistov realizaron un vuelo de 15 órbitas en la nave Voskhod 1. Éste fue el único vuelo tripulado en ese año y situó el número de horas de vuelo de los cosmonautas soviéticos en un total de 455. En aquel momento, el total de horas de vuelo de los astronautas estadounidenses sólo llegaba a las 54 horas. El 18 de marzo de 1965 los cosmonautas Pável I. Belyayev y Alexéi A. Leonov fueron lanzados a bordo del Voskhod 2. En un vuelo de 17 vueltas a la Tierra, Leonov se convirtió en el primer hombre en realizar un paseo espacial, llevando a cabo la primera actividad extravehicular (EVA, siglas en inglés), al salir de la nave unido a ella por medio de un cable.
El programa estadounidense Gemini estaba diseñado para desarrollar una tecnología que permitiera llegar a la Luna. En mayo de 1961 el presidente de Estados Unidos, John F. Kennedy, puso en marcha el programa Apolo, con el objetivo de llevar un hombre a la Luna y que pudiera regresar a salvo 'antes del fin de la década'. Esta decisión se materializó en un intenso programa de vuelos espaciales tripulados a gran escala. Las naves Gemini albergaban dos tripulantes y estaban construidas para funcionar largos periodos de tiempo y desarrollar técnicas espaciales de encuentros y ensamblajes con otras naves. Entre 1965 y 1966 se llevaron a cabo diez misiones dentro de este programa.
Durante el vuelo del Gemini 4, el comandante Edward H. White, de las fuerzas aéreas, se convirtió en el primer astronauta estadounidense en realizar un paseo espacial. Con la ayuda de un sistema autopropulsado de gas a presión, permaneció 21 minutos en el espacio. Mientras las naves Gemini 6 y 7 se hallaban juntas en órbita, en diciembre de 1965 se acercaron a muy pocos metros una de otra. Al cabo de 20 horas, mientras la Gemini 6 aterrizaba, la Gemini 7 continuó orbitando, hasta completar un total de 334 horas. Este vuelo de casi 14 días de duración obtuvo datos e información médica sobre los seres humanos en el espacio, vitales para asegurar el éxito de la misión lunar Apolo, que duraría 10 días. Además, sirvió para poner a prueba la viabilidad de los sistemas de compartimentos de combustible de hidrógeno y oxígeno. En los vuelos de los Gemini 10, 11 y 12 se llevaron a cabo varios encuentros y acoplamientos con vehículos espaciales que habían sido puestos en órbita previamente.
Al finalizar el último vuelo del programa Gemini, los astronautas estadounidenses habían acumulado un total de 2.000 horas de vuelos tripulados en el espacio, aventajando a los soviéticos, y unas 12 horas en paseos espaciales (EVA).
Los programas Soyuz y Apolo
El año 1967 fue trágico para ambas potencias espaciales. El 27 de enero, durante una prueba en Tierra de la nave Apolo en cabo Kennedy, se inició un fuego en el módulo de control de la tripulación, con tres hombres a bordo. Debido a la atmósfera de oxígeno puro presurizado en el interior de la nave, un incendio repentino rodeó y causó la muerte de los astronautas Grisson, White y Roger B. Chaffee. Como consecuencia de este incidente, el programa Apolo sufrió un retraso de más de un año, mientras se volvía a revisar el diseño de la nave y los materiales.
El 23 de abril de 1967, el cosmonauta Komarov despegó en el primer vuelo tripulado de la nueva nave soviética Soyuz. La nave tenía espacio para tres cosmonautas, además de un compartimento para trabajar y realizar experimentos, accesible a través de una escotilla. Cuando entró en la atmósfera terrestre y desplegó los paracaídas de aterrizaje, las cuerdas de éste se enredaron, provocando la muerte del piloto. El programa soviético se reanudó dos años más tarde.
En octubre de 1968 se lanzó el primer vuelo tripulado del proyecto Apolo mediante el sistema propulsor Saturno 1B. Los astronautas Schirra, R. Walter Cunningham y Donn F. Eisele, dieron 163 vueltas alrededor de la Tierra, comprobando el funcionamiento de los equipos, haciendo fotografías y transmitiendo imágenes de televisión. En diciembre de 1968 el Apolo 8, que llevaba a bordo a los astronautas Borman, Lovell y William A. Anders dio diez vueltas alrededor de la Luna y volvió a la Tierra. El Apolo 9, tripulado por James A. McDivitt, David R. Scott y Russel L. Schweickart, realizó pruebas de separación, encuentro y acoplamiento del módulo lunar (ML) de aterrizaje, en una misión de 151 vueltas a la Tierra. El vuelo del Apolo 10, que llevaba a bordo al astronauta Stafford, al capitán de corbeta John W. Young y al capitán de fragata Eugene A. Cernan, dio 31 vueltas a la Luna, en preparativos para un posterior alunizaje. Según estaba planeado, Stafford y Cernan se trasladaron desde el módulo de comando del Apolo (MC) al módulo lunar, con el que descendieron hasta una distancia de 16 km de la superficie de la Luna, mientras el astronauta Young pilotaba el módulo de comando. Después, en la fase ascendente, realizaron con éxito las maniobras de aproximación y acoplamiento al módulo de comando, entraron en él y abandonaron el módulo lunar, encendiendo los cohetes para regresar a la Tierra. El programa Apolo estaba ya listo para llevar astronautas a la Luna. Véase Seres humanos en la Luna, más abajo.
Mientras tanto, la URSS lanzó la nave no tripulada Zond a una órbita lunar, llevando cámaras y especies biológicas a bordo. En octubre de 1968 el coronel Gueorgui T. Beregovoi dio 60 vueltas a la Luna con la nave Soyuz 3. Las naves Soyuz 4 y Soyuz 5 completaron en órbita terrestre maniobras de aproximación y acoplamiento en enero de 1969. Con ambas naves acopladas, los cosmonautas Alexéi S. Yeliseyev y el teniente coronel Yevgueni V. Khrunov salieron en un paseo espacial de la Soyuz 5 a la Soyuz 4, pilotada por el coronel Vladímir A. Shatalov. En octubre de 1969 despegaron las naves Soyuz 6, 7 y 8 con un día de diferencia, se encontraron en órbita, pero no llegaron a acoplarse. La Soyuz 9, tripulada por dos cosmonautas, batió el récord de duración de un vuelo, permaneciendo en el espacio casi 18 días en junio de 1970.
SERES HUMANOS EN LA LUNA
En el año 1969, la humanidad logró realizar el viejo sueño de pisar la Luna. El 16 de julio despegó la histórica nave Apolo 11. Una vez en la órbita lunar, Edwin E. Aldrin y Neil A. Armstrong se trasladaron al módulo lunar. Michael Collins permaneció en la órbita lunar pilotando el módulo de control después de la separación y apoyando las maniobras del módulo lunar. Este último descendió a la Luna y se posó sobre la superficie el 20 de julio, al borde del Mar de la Tranquilidad. Horas más tarde, Armstrong descendió por una escalerilla con su traje espacial y puso su pie sobre la Luna. Sus primeras palabras fueron: “Éste es un pequeño paso para un hombre, pero un gran salto para la humanidad”. Pronto le siguió Aldrin y ambos astronautas estuvieron caminando más de dos horas por la Luna. Recogieron 21 kg de muestras del suelo, tomaron fotografías y colocaron un artefacto para detectar y medir el viento solar, un reflector de rayos láser y un sismógrafo. Armstrong y Aldrin clavaron en el suelo una bandera de Estados Unidos y hablaron por radio con el presidente Richard M. Nixon en la Casa Blanca. Comprobaron que no era difícil caminar y correr bajo una gravedad seis veces menor que la de la Tierra. Millones de personas pudieron seguir en directo la retransmisión vía satélite del acontecimiento.
Ya de regreso al módulo lunar, los astronautas se quitaron los trajes espaciales y descansaron unas horas antes de despegar. Abandonaron la Luna en vuelo vertical en el módulo de ascenso, dejando en la superficie lunar la parte inferior del módulo lunar que actuó como plataforma de lanzamiento. El módulo de ascenso se desechó tras acoplarse al módulo de comando, al que regresaron los dos astronautas. El regreso del Apolo 11 se realizó sin contratiempos y la nave cayó a las aguas del océano Pacífico, de donde fue recuperada, cerca de Hawai, el 24 de julio.
Ante la posibilidad de que organismos lunares contaminaran la Tierra, los astronautas se vistieron con trajes de aislamiento biológico antes de salir de la nave y fueron sometidos a una cuarentena de tres semanas. Su salud no se vio afectada.
Apolo 12
El siguiente vuelo a la Luna empezó el 14 de noviembre de 1969 con el lanzamiento del Apolo 12, llevando a bordo a los astronautas Charles Conrad, Richard F. Gordon y Alan L. Bean. Una vez en órbita lunar, Conrad, piloto y comandante, y Bean, piloto del módulo lunar, pasaron a este último. Se posaron al norte de la cadena montañosa Riphaeus, a unos 180 m del lugar donde lo hiciera dos años antes el Surveyor 3.
Los dos astronautas exploraron las inmediaciones, en dos fases de casi cuatro horas cada una. Realizaron pruebas científicas, tomaron fotografías, recogieron muestras de suelo lunar y se llevaron algunos elementos de la sonda Surveyor 3 para examinarlos de regreso a la Tierra. Después de despegar y trasladarse al módulo de comando que pilotaba Gordon, amerizaron con éxito y fueron recogidos el 24 de noviembre. También fueron sometidos a cuarentena.
El Apolo 12 supuso un gran adelanto respecto del Apolo 11, en especial en la precisión del alunizaje, lo que llevó a planear la posibilidad de que el Apolo 13 alunizara en terreno más accidentado.
Apolo 13
El 11 de abril de 1970 fue lanzado al espacio el Apolo 13, llevando a bordo al veterano Lovell, a Fred W. Haise y a John L. Swigert. El vehículo estuvo muy cerca del desastre cuando se averió en vuelo un tanque de oxígeno. Tuvieron que cancelar el alunizaje y, utilizando los sistemas de emergencia, se consiguió traerlos de vuelta a la Tierra, amerizando al sur de la isla Pago Pago, en el sur del océano Pacífico, el 17 de abril.
Apolos 14 y 15
El Apolo 14 retomó la fallida misión de su predecesor y fue lanzado el 31 de enero de 1971, después de efectuar las modificaciones necesarias para evitar fallos como el ocurrido en el Apolo 13. Shepard y Edgar D. Mitchell alunizaron con éxito con el módulo lunar sobre la accidentada zona Fra Mauro, mientras que el astronauta Stuart A. Rossa permanecía en órbita lunar pilotando el módulo de comando. Shepard y Mitchell estuvieron más de nueve horas explorando una zona constituida por las rocas más antiguas de la Luna, recogiendo unos 43 kg de muestras geológicas e instalando instrumentos científicos. Regresaron sin problemas a la Tierra el 9 de febrero de 1971.
El Apolo 15 fue lanzado el 26 de julio de 1971, llevando a bordo a David R. Scott como comandante, a James B. Irwin como piloto del módulo lunar y a Alfred M. Worden como piloto del módulo de comando. Scott e Irwin pasaron dos días en la Luna y 18 horas fuera del módulo, al borde del Mar Imbrium, próximos a la fisura de Hadley, de 366 m de profundidad, y a la cadena montañosa de los Apeninos, una de las más altas de la Luna. Durante su exploración de la superficie lunar, de 18 horas y 37 minutos de duración, recorrieron más de 28,2 km con un vehículo eléctrico de exploración lunar de cuatro ruedas. Instalaron instrumentos científicos y recogieron unos 91 kg de rocas, entre ellas lo que se pensaba que era una muestra cristalina de la corteza original de la Luna, de una antigüedad de unos 4.600 millones de años. Dejaron una cámara de televisión para retransmitir el despegue y, antes de dejar la órbita lunar, soltaron un subsatélite de 35,6 kg, diseñado para transmitir información sobre campos magnéticos, gravitacionales y de alta energía del espacio lunar. Durante su regreso, Worden realizó un paseo espacial de 16 minutos, cuando la nave estaba a 315.400 km de la Tierra, una distancia récord para los paseos espaciales realizados hasta entonces. Los astronautas del Apolo 15 amerizaron sin problemas el 17 de agosto, a unos 530 km al norte de Hawai, y fue la primera tripulación de vuelta de la Luna que no se sometió a cuarentena.
Apolo 16 y 17
El 16 de abril de 1972 los astronautas Young, Charles Moss Duke y Thomas Kenneth Mattingly partieron hacia la Luna en el Apolo 16 para explorar los altos de Descartes y las planicies de Cayley. Mientras Mattingly permanecía en órbita, los otros dos astronautas se posaron en la zona prevista el 20 de abril. Pasaron 20 horas y 14 minutos en la Luna realizando pruebas, recorriendo unos 26,6 km en el vehículo lunar y recogiendo más de 97 kg de muestras de rocas.
El programa lunar de Estados Unidos culminó con el Apolo 17 que viajó del 6 al 19 de diciembre de 1972. Durante el viaje de 13 días de duración, el veterano astronauta Cernan y el geólogo Harrison H. Schmitt pasaron 22 horas en la Luna y recorrieron 35 km en el vehículo lunar, explorando la zona del valle de Taurus-Littrow, mientras Ronald E. Evans permanecía en órbita.
ESTACIONES ESPACIALES
Las primeras naves construidas como estaciones espaciales fueron la Salyut y el Skylab, diseñadas para permanecer largos periodos en la órbita terrestre mientras las tripulaciones iban y venían en otras naves. Esto daba la oportunidad de llevar a cabo numerosos y valiosos experimentos y observaciones astronómicas.
Estaciones soviéticas
La estación soviética Salyut 1, de 18.600 kg, fue lanzada al espacio el 19 de abril de 1971. Tres días después, la nave Soyuz 10, con tres cosmonautas a bordo, se acopló a la estación espacial. Por algún motivo desconocido, los astronautas no entraron en la estación, se desacoplaron y regresaron a la Tierra. En junio, la nave Soyuz 11 se acopló a la estación Salyut 1 y su tripulación de tres hombres entró en ella para realizar un vuelo que alcanzó el récord de 24 días. En ese tiempo llevaron a cabo numerosos experimentos biológicos y estudios sobre recursos de la Tierra. Sin embargo, a su regreso a la Tierra ocurrió una tragedia y los tres cosmonautas soviéticos —Feorgi T. Dobrovolsky, Vladislav N. Volkov y Víktor I. Patsayev— perecieron a causa de una fuga de aire en una válvula. Su muerte fue instantánea al no tener puestos los trajes espaciales. El programa soviético sufrió otro contratiempo cuando la Salyut 2, lanzada en abril de 1973, quedó fuera de control y se perdieron partes de ella.
La Unión Soviética continuó su programa con la Salyut 3 (junio de 1974-enero de 1975), la Salyut 4 (diciembre de 1974-febrero de 1977) y la Salyut 5 (junio de 1976-agosto de 1977). La Salyut 6 (septiembre de 1977-julio de 1982) y la Salyut 7 fueron visitadas por numerosas tripulaciones internacionales de países como Cuba, Francia e India, así como por la primera mujer que realizó un paseo espacial: Svetlana Savitskaya, que participó en el viaje de la nave Soyuz T12, del 17 al 29 de julio de 1984. Uno de los vuelos más importantes del programa Soyuz/Salyut tuvo lugar en 1984, cuando los cosmonautas Leonid Kizim, Vladímir Soloviov y Oleg Atkov pasaron 237 días a bordo de la Salyut 7 antes de regresar a la Tierra; fue el vuelo más largo de la época. La estación Salyut 7 fue abandonada a mediados de 1986.
La estación espacial Mir fue construida por los soviéticos como sucesora de la Salyut y lanzada el 20 de febrero de 1986 desde el Cosmódromo de Baikonur, en Kazajstán. Concebida por los soviéticos para ser la primera estación espacial permanentemente ocupada por una tripulación, contaba con seis terminales de acoplamiento y tenía capacidad para alojar a dos cosmonautas. En 1987 el coronel Yuri Romanenko pasó 326 días a bordo de la estación, batiendo un nuevo récord de permanencia en el espacio. El 12 de abril de ese mismo año los soviéticos lograron con éxito acoplar a la estación el módulo astrofísico Kvant, de 11 toneladas. Este módulo, equipado con cuatro telescopios de rayos X, estaba diseñado para unirse a la estación Mir y observar una supernova que había estallado recientemente en una galaxia cercana, la Gran Nube de Magallanes. Los rayos X del estallido de la estrella, bloqueados por la atmósfera terrestre, no podían detectarse desde la Tierra. Entre 1987 y 1988 los cosmonautas soviéticos Vladímir Titov y Musa Manarov lograron permanecer en el espacio un total de 366 días; sin embargo, en 1995 el médico Valeri Polyakov completó 438 días de permanencia, estableciendo un nuevo récord.
Cuatro años después, en 1999, la estación fue abandonada por falta de financiación y permaneció sin tripulación hasta abril de 2000, cuando la ocuparon los astronautas rusos Serguéi Zaliotin y Alexandr Kaleri, que llegaron a bordo de la misión Soyuz PM-30. Los dos cosmonautas repararon la estación y permanecieron en ella hasta el 16 de junio de 2000, fecha en la que quedó en régimen de control automático hasta su caída controlada a la Tierra, que tuvo lugar el 23 de marzo de 2001.
Estaciones estadounidenses
El programa estadounidense Skylab era más extenso y complejo que el de la Unión Soviética. El Skylab, lanzado con las dos primeras fases del cohete Saturno 5, pesaba 88.000 kg, frente a los 18.600 kg de la Salyut. En contraste con los 99 m2 estimados del interior de la estación soviética, el Skylab tenía 357 m2, unas 3,5 veces mayor. El Skylab funcionaba como laboratorio en órbita terrestre. Se utilizó para realizar observaciones astronómicas del Sol, así como multiespectrales de la Tierra, y llevar a cabo numerosos experimentos tecnológicos y científicos, como el crecimiento metálico-cristalino en ausencia de gravedad, además de estudios médicos de larga duración sobre la salud de sus tres tripulantes.
El Skylab se averió durante su lanzamiento el 25 de mayo de 1973, pero su tripulación, formada por el veterano astronauta Conrad, por Joseph P. Kerwin y por Paul J, Weitz, lo reparó durante un paseo espacial. El vuelo duró 28 días. Una segunda tripulación pasó 59 días y una tercera, 84. El programa Skylab se consideró un éxito. Se emplearon más de 740 horas en la observación del Sol con telescopios, se tomaron más de 175.000 fotografías de este astro y se obtuvieron unos 64 km de cinta con datos, además de 46.000 fotografías de la Tierra. El 11 de julio de 1979, al cumplir con su órbita número 34.981, el Skylab cayó a la Tierra; sus fragmentos ardiendo se precipitaron sobre zonas habitadas del oeste de Australia y sobre el océano Índico.
Estación Espacial Internacional
El gobierno de Estados Unidos, en cooperación con Rusia, Canadá, Japón y los países miembros de la Agencia Espacial Europea, proyectó la construcción de una estación espacial para ser ensamblada en el espacio. La denominada Estación Espacial Internacional, conocida también como ISS (siglas en inglés), es un proyecto de elevado coste.
La etapa de diseño de este histórico proyecto duró una década, entre 1983 y 1993, año en el que la NASA firmó un acuerdo de colaboración con la Agencia Espacial Rusa. La ISS, cuyo coste estimado es de unos 60.000 millones de dólares, será cinco veces mayor que la estación rusa Mir y estará formada por más de 100 elementos. Para su construcción serán necesarios más de 40 vuelos espaciales y 1.100 horas de actividades extra-vehiculares, una cifra superior a todas las invertidas hasta la fecha en las misiones espaciales tripuladas. La ISS podrá acoger a una tripulación permanente de siete astronautas.
El 20 de noviembre de 1998 la Agencia Espacial Rusa puso en órbita la primera sección de la ISS, el Zariá (‘amanecer’), un módulo que servirá como fuente de energía y propulsión para otras piezas durante el periodo de construcción. La segunda pieza, de fabricación estadounidense y denominada Unity, salió de la Tierra dos semanas después a bordo de la lanzadera espacial Endeavour. El 6 de diciembre ambos módulos fueron acoplados en órbita por el equipo de astronautas del Endeavour. El tercer módulo, el Zvezdá, construido por Rusia, quedó acoplado a los dos anteriores el 26 de julio de 2000. El 10 de febrero de 2001 quedó ensamblado a la Estación el primer laboratorio científico de la ISS, el módulo Destiny. A partir de julio de 2001 los astronautas pudieron salir al espacio directamente, sin la ayuda de un transbordador, debido al acoplamiento a la Estación de la unidad estadounidense Quest. En septiembre quedó unida a la Estación otra cámara de descompresión, la rusa Pirs, que, además de actuar como escotilla de salida, permitía el atraque de tres naves de forma simultánea.
En abril de 2002 se inició una nueva fase en la construcción de la ISS con la instalación, sobre el módulo Destiny, del primer segmento (S0, S-Zero) de lo que será una estructura transversal de unos 110 metros que servirá de base a nuevos elementos. Esta gran estructura, la “columna vertebral” de la Estación, contará también con un sistema de raíles por los que se moverá una plataforma que facilitará las tareas de construcción y mantenimiento. En octubre y noviembre del mismo año quedaron instalados dos nuevos elementos de esta larga estructura, el S1 y el P1, dos enormes vigas ubicadas una a cada lado del segmento S0.
La primera tripulación permanente de la ISS, integrada por el astronauta estadounidense William Shepherd y los rusos Yuri Gidzenko y Serguei Krikaliov, llegó a la Estación el 2 de noviembre de 2000. En abril de 2001, los países socios del proyecto de construcción de la ISS autorizaron el viaje a la Estación del primer “turista” espacial, el financiero estadounidense Dennis Tito, quien permaneció seis días a bordo de la ISS a principios de mayo.
La Estación Espacial Internacional es el intento más ambicioso para establecer un lugar en el que puedan habitar seres humanos fuera de la atmósfera terrestre. Además de ser un importante centro de investigación, de tener éxito, la estación se convertirá también en un punto de escala para los viajes de exploración a otros cuerpos del Sistema Solar. Una vez completada, está previsto que se mantenga operativa entre unos 10 y 15 años.
PROGRAMAS ACTUALES Y FUTUROS
A principios de la década de 1980, el Sistema de Transporte Espacial (STS, en inglés), más conocido como la lanzadera o transbordador espacial, se convirtió en el mayor programa espacial de Estados Unidos. Al surgir problemas con el STS se decidió emplear vehículos de lanzamiento desechables (ELVs, en inglés). En la década de 1990 Estados Unidos tenía previsto sustituir el transbordador espacial por una nueva nave, la X–30, pero por dificultades presupuestarias se optó por utilizar una combinación de ELVs y lanzaderas para poner en órbita satélites y naves espaciales.
Transbordador espacial
El transbordador o lanzadera espacial es un avión espacial tripulado de múltiples usos, diseñado para despegar y entrar en órbita llevando naves de hasta 3.000 kg, con siete tripulantes y pasajeros. La parte superior de la nave tenía una vida estimada de unas 100 misiones y a su regreso a la Tierra sería capaz de realizar maniobras de aterrizaje. Su versatilidad y su capacidad para desplegar, rescatar y reparar satélites en órbita hizo que sus defensores la consideraran un gran adelanto en la exploración del espacio. Sin embargo, sus detractores estimaron que la NASA estaba poniendo demasiada confianza en la nave, en detrimento de otras misiones no tripuladas.
La primera misión de la lanzadera espacial, pilotada por John W. Young y Robert Crippen a bordo de la nave Columbia, se inició el 1 de abril de 1981. Se trataba de un vuelo de pruebas en vacío. El quinto vuelo de la lanzadera espacial fue la primera misión real. Los astronautas del Columbia desplegaron dos satélites de comunicaciones comerciales entre el 11 y 16 de noviembre de ese año. Entre los siguientes vuelos dignos de mención destacan el séptimo, entre cuya tripulación se encontraba la primera mujer astronauta estadounidense, Sally K. Ride; el noveno, entre el 28 de noviembre y el 8 de diciembre de 1983, que transportaba el primer Spacelab de la Agencia Espacial Europea; el undécimo, entre el 7 y el 13 de abril de 1984, durante el cual se rescató un satélite, se reparó y se volvió a desplegar; y el decimocuarto, entre el 8 y el 14 de noviembre de 1984, que rescató dos costosos satélites averiados para traerlos a la Tierra.
A pesar de estos éxitos, la lanzadera se fue retrasando en cuanto a los lanzamientos programados, pasó a ser utilizada cada vez con mayor frecuencia en pruebas militares, y empezó a sufrir la fuerte competencia del programa Ariane de la Agencia Espacial Europea en la puesta en órbita de satélites comerciales. Por otro lado, el 28 de enero de 1986 la lanzadera Challenger estalló al minuto de haber despegado debido a un fallo en una junta de sus cohetes. Murieron siete astronautas: el comandante Francis R. Scobee, el piloto Michael J. Smith y los especialistas de la misión Judith A. Resnik, Ellison S. Onizuka, Ronald E. McNair, Gregory B. Jarvis y Christa McAuliffe. Esta última había sido seleccionada años atrás para ser la primera maestra en el espacio y la representante civil del programa del transbordador. La tragedia paralizó completamente el programa de vuelos hasta que se analizaron y volvieron a diseñar todos los sistemas. Una comisión presidencial, encabezada por el ex secretario de Estado William Rogers y el veterano astronauta Neil Armstrong, culpó del accidente a la NASA y a sus sistemas de mantenimiento del control de calidad.
Como consecuencia del desastre del Challenger se volvieron a diseñar las juntas de los cohetes para evitar que se reprodujera el accidente del 28 de enero. La reanudación de los vuelos de la lanzadera tuvo lugar el 29 de septiembre de 1988 con el Discovery, que llevaba cinco astronautas a bordo. En esta misión se puso en órbita el satélite de comunicaciones de la NASA TDRS–3 y se llevaron a cabo numerosos experimentos. El éxito de esta misión animó a Estados Unidos a continuar su programa de vuelos espaciales. En 1990 la lanzadera desplegó el telescopio espacial Hubble, que había costado 1.500 millones de dólares, pero por un defecto del espejo principal no pudo funcionar con la resolución prevista hasta que fue reparado en 1993. A partir de 1995 el transbordador realizó también una serie de misiones a la estación Mir, y a finales de 1998 tuvo lugar su primera misión a la Estación Espacial Internacional.
A mediados de 2002, los ingenieros de la NASA descubrieron pequeñas grietas en las cubiertas metálicas internas de los sistemas principales de propulsión de todos sus transbordadores, por lo que se decidió paralizar temporalmente las misiones correspondientes previstas para esas fechas. Los vuelos se reanudaron en octubre del mismo año con el lanzamiento del transbordador Atlantis hacia la Estación Espacial Internacional.
El 1 de febrero de 2003 el Columbia, en la misión 107 del transbordador, sufrió un trágico accidente que costó la vida a sus siete tripulantes. Después de un vuelo orbital de 16 días de duración en el que se realizaron numerosos experimentos, el transbordador estalló al reentrar en la atmósfera. Las investigaciones sobre las posibles causas del accidente se centraron rápidamente en la protección térmica del ala izquierda de la nave. Los vuelos de los tres transbordadores ahora disponibles (Discovery, Atlantis y Endeavour) se suspendieron, probablemente hasta principios de 2004, a la espera de que se determinen las causas de la tragedia y se hagan las correcciones y reajustes pertinentes; esto, a su vez, supone un retraso en otros programas espaciales, en particular el desarrollo de la Estación Espacial Internacional.
Perspectivas
Con los contratiempos que supusieron el mal funcionamiento del telescopio espacial Hubble y las fugas en los tanques de combustible de hidrógeno del transbordador espacial, no parecía que el programa espacial de Estados Unidos pudiera llegar a cumplir sus objetivos para la década de 1990. Además de la estación espacial tripulada, uno de esos objetivos era la construcción de la nave X–30, proyectada para despegar como los aviones convencionales y autopropulsarse hasta llegar a la zona orbital con potentes estatorreactores, que no llegó a realizarse. La Iniciativa de Lanzamiento Espacial de la NASA se ocupa en la actualidad de estudiar el nuevo proyecto de avión orbital reutilizable, lo que sería la segunda generación de transbordadores espaciales. Todavía ha de pasar bastante tiempo antes de abordar otros objetivos más ambiciosos, como el de establecer una base en la Luna y enviar astronautas a explorar el planeta Marte.  

Entradas populares

Me gusta

Seguidores