Máquina herramienta





Los grandes invento: Máquina herramienta

Taladradora
Este operario controla una enorme taladradora mientras perfora una plancha metálica. La plancha está colocada sobre unos pilares para que la taladradora pueda atravesarla y acabar el agujero. Estas máquinas herramientas de gran tamaño se usan a menudo para fabricar piezas de grandes proyectos de construcción, como barcos.

Máquina herramienta, máquina estacionaria y motorizada que se utiliza para dar forma o modelar materiales sólidos, especialmente metales. El modelado se consigue eliminando parte del material de la pieza o estampándola con una forma determinada. Son la base de la industria moderna y se utilizan directa o indirectamente para fabricar piezas de máquinas y herramientas.
Estas máquinas pueden clasificarse en tres categorías: máquinas desbastadoras convencionales, prensas y máquinas herramientas especiales. Las máquinas desbastadoras convencionales dan forma a la pieza cortando la parte no deseada del material y produciendo virutas. Las prensas utilizan diversos métodos de modelado, como cizallamiento, prensado o estirado. Las máquinas herramientas especiales utilizan la energía luminosa, eléctrica, química o sonora, gases a altas temperaturas y haces de partículas de alta energía para dar forma a materiales especiales y aleaciones utilizadas en la tecnología moderna.
2
HISTORIA
Las máquinas herramientas modernas datan de 1775, año en el que el inventor británico John Wilkinson construyó una taladradora horizontal que permitía conseguir superficies cilíndricas interiores. Hacia 1794 Henry Maudslay desarrolló el primer torno mecánico. Más adelante, Joseph Whitworth aceleró la expansión de las máquinas de Wilkinson y de Maudslay al desarrollar varios instrumentos que permitían una precisión de una millonésima de pulgada (25 millonésimas de milímetro). Sus trabajos tuvieron gran relevancia ya que se necesitaban métodos precisos de medida para la fabricación de productos hechos con piezas intercambiables.
Las primeras pruebas de fabricación de piezas intercambiables se dieron al mismo tiempo en Europa y en Estados Unidos. Estos experimentos se basaban en el uso de calibres de catalogación, con los que las piezas se podían clasificar en dimensiones prácticamente idénticas. El primer sistema de verdadera producción en serie fue creado por el inventor estadounidense Eli Whitney, quien consiguió en 1798 un contrato del gobierno para producir 10.000 mosquetes hechos con piezas intercambiables.
Durante el siglo XIX se alcanzó un grado de precisión relativamente alto en tornos, perfiladoras, cepilladoras, pulidoras, sierras, fresadoras, taladradoras y perforadoras. La utilización de estas máquinas se extendió a todos los países industrializados. Durante los albores del siglo XX aparecieron máquinas herramientas más grandes y de mayor precisión. A partir de 1920 estas máquinas se especializaron y entre 1930 y 1950 se desarrollaron máquinas más potentes y rígidas que aprovechaban los nuevos materiales de corte desarrollados en aquel momento. Estas máquinas especializadas permitían fabricar productos estandarizados con un coste bajo, utilizando mano de obra sin cualificación especial. Sin embargo, carecían de flexibilidad y no se podían emplear para varios productos ni para variaciones en los estándares de fabricación. Para solucionar este problema, los ingenieros se han dedicado durante las últimas décadas a diseñar máquinas herramientas muy versátiles y precisas, controladas por ordenadores o computadoras, que permiten fabricar de forma barata productos con formas complejas. Estas nuevas máquinas se aplican hoy en todos los campos.
3
MÁQUINAS HERRAMIENTAS CONVENCIONALES
Torno, fresadora, cepilladora y perfiladora
Esta selección de máquinas herramientas básicas muestra diversos métodos para dar forma a una pieza. El tipo de tarea suele determinar la herramienta empleada. Por ejemplo, para hacer una agarradera redonda se usaría un torno, mientras que para hacer una tabla de cocina se usaría una cepilladora. Para usar las máquinas herramientas de forma eficaz, la pieza (como en el caso de la perfiladora) o la herramienta (como en el caso de la cepilladora) deben permanecer estacionarias.
© Microsoft Corporation. Reservados todos los derechos.
Entre las máquinas herramientas básicas se encuentran el torno, las perfiladoras, las cepilladoras y las fresadoras. Hay además máquinas taladradoras y perforadoras, pulidoras, sierras y diferentes tipos de máquinas para la deformación del metal.
3.1
Torno
El torno, la máquina giratoria más común y más antigua, sujeta una pieza de metal o de madera y la hace girar mientras un útil de corte da forma al objeto. El útil puede moverse paralela o perpendicularmente a la dirección de giro, para obtener piezas con partes cilíndricas o cónicas, o para cortar acanaladuras. Empleando útiles especiales, un torno se puede utilizar también para obtener superficies lisas, como las producidas por una fresadora, o para taladrar orificios en la pieza.
3.2
Perfiladora
La perfiladora se utiliza para obtener superficies lisas. El útil se desliza sobre una pieza fija y efectúa un primer recorrido para cortar salientes, volviendo a la posición original para realizar el mismo recorrido tras un breve desplazamiento lateral. Esta máquina utiliza un útil de una sola punta y es lenta, porque depende de los recorridos que se efectúen hacia adelante y hacia atrás. Por esta razón no se suele utilizar en las líneas de producción, pero sí en fábricas de herramientas y troqueles o en talleres que fabrican series pequeñas y que requieren mayor flexibilidad.
3.3
Cepilladora
Esta es la mayor de las máquinas herramientas de vaivén. Al contrario que en las perfiladoras, donde el útil se mueve sobre una pieza fija, la cepilladora mueve la pieza sobre un útil fijo. Después de cada vaivén, la pieza se mueve lateralmente para utilizar otra parte de la herramienta. Al igual que la perfiladora, la cepilladora permite hacer cortes verticales, horizontales o diagonales. También puede utilizar varios útiles a la vez para hacer varios cortes simultáneos.
3.4
Fresadora
En las fresadoras, la pieza entra en contacto con un dispositivo circular que cuenta con varios puntos de corte. La pieza se sujeta a un soporte que controla su avance contra el útil de corte. El soporte puede avanzar en tres direcciones: diagonal, horizontal y vertical. En algunos casos también puede girar. Las fresadoras son las máquinas herramientas más versátiles. Permiten obtener superficies curvadas con un alto grado de precisión y un acabado excelente. Los distintos tipos de útiles de corte permiten obtener ángulos, ranuras, engranajes o muescas.
3.5
Taladradoras y perforadoras
Máquinas herramientas comunes
Las máquinas herramientas más comunes preparan las piezas para su posterior ajuste y uso. Las taladradoras, pulidoras, prensas y perforadoras se utilizan mucho en la industria, y ejecutan las tareas con más rapidez y precisión que si las realizara de forma manual un trabajador.

Las máquinas taladradoras y perforadoras se utilizan para abrir orificios, para modificarlos o para adaptarlos a una medida o para rectificar o esmerilar un orificio a fin de conseguir una medida precisa o una superficie lisa.
Hay taladradoras de distintos tamaños y funciones, desde taladradoras portátiles a radiales, pasando por taladradoras de varios cabezales, máquinas automáticas o máquinas de perforación de gran longitud.
La perforación implica el aumento de la anchura de un orificio ya taladrado. Esto se hace con un útil de corte giratorio con una sola punta, colocado en una barra y dirigido contra una pieza fija. Entre las máquinas perforadoras se encuentran las perforadoras de calibre y las fresas de perforación horizontal y vertical.
3.6
Pulidora
El pulido es la eliminación de metal con un disco abrasivo giratorio que trabaja como una fresadora de corte. El disco está compuesto por un gran número de granos de material abrasivo conglomerado, en que cada grano actúa como un útil de corte minúsculo. Con este proceso se consiguen superficies muy suaves y precisas. Dado que sólo se elimina una parte pequeña del material con cada pasada del disco, las pulidoras requieren una regulación muy precisa. La presión del disco sobre la pieza se selecciona con mucha exactitud, por lo que pueden tratarse de esta forma materiales frágiles que no se pueden procesar con otros dispositivos convencionales.
3.7
Sierras
Sierras circulares
Las sierras circulares son, probablemente, las sierras mecánicas más utilizadas. En la imagen, una sierra de este tipo corta un tronco antes de ser transportado a los aserraderos.

Las sierras mecánicas más utilizadas se pueden clasificar en tres categorías, según el tipo de movimiento que se emplea para realizar el corte: de vaivén, circulares o de banda. Las sierras suelen tener un banco o marco, un tornillo para sujetar la pieza, un mecanismo de avance y una hoja de corte.
3.8
Útiles y fluidos para el corte
Dado que los procesos de corte implican tensiones y fricciones locales y un considerable desprendimiento de calor, los materiales empleados en los útiles de corte deben ser duros, tenaces y resistentes al desgaste a altas temperaturas. Hay materiales que cumplen estos requisitos en mayor o menor grado, como los aceros al carbono (los que contienen un 1 o 1,2% de carbono), los aceros de corte rápido (aleaciones de hierro con volframio, cromo, vanadio o carbono), el carburo de volframio y los diamantes. También tienen estas propiedades los materiales cerámicos y el óxido de aluminio.
En muchas operaciones de corte se utilizan fluidos para refrigerar y lubricar. La refrigeración alarga la vida de los útiles y ayuda a fijar el tamaño de la pieza terminada. La lubricación reduce la fricción, limitando el calor generado y la energía necesaria para realizar el corte. Los fluidos para corte son de tres tipos: disoluciones acuosas, aceites químicamente inactivos y fluidos sintéticos.
3.9
Prensas
Las prensas dan forma a las piezas sin eliminar material, o sea, sin producir viruta. Una prensa consta de un marco que sostiene una bancada fija, un pistón, una fuente de energía y un mecanismo que mueve el pistón en paralelo o en ángulo recto con respecto a la bancada. Las prensas cuentan con troqueles y punzones que permiten deformar, perforar y cizallar las piezas. Estas máquinas pueden producir piezas a gran velocidad porque el tiempo que requiere cada proceso es sólo el tiempo de desplazamiento del pistón.
4
MÁQUINAS HERRAMIENTAS NO CONVENCIONALES
Entre las máquinas herramientas no convencionales se encuentran las máquinas de arco de plasma, las de rayo láser, las de descarga eléctrica y las electroquímicas, ultrasónicas y de haz de electrones. Estas máquinas fueron desarrolladas para dar forma a aleaciones de gran dureza utilizadas en la industria pesada y en aplicaciones aerospaciales. También se emplean para dar forma y grabar materiales muy delgados que se utilizan para fabricar componentes electrónicos como los microprocesadores.
4.1
Arco de plasma
La mecanización con arco de plasma utiliza un chorro de gas a alta temperatura y gran velocidad para fundir y eliminar el material. El arco de plasma se emplea para cortar materiales difíciles de seccionar con otros métodos, como el acero inoxidable y las aleaciones de aluminio.
4.2
Láser
Soldador láser
Un láser puede vaporizar metales a temperaturas superiores a los 5.500 °C y soldar piezas como muestra la fotografía. El láser es particularmente útil porque puede efectuar agujeros o cortes en piezas metálicas sin deformarlas.

La mecanización por rayo láser se consigue dirigiendo con mucha exactitud un rayo láser, para vaporizar el material que se desea eliminar. Este método es muy adecuado para hacer orificios con gran precisión. También puede perforar metales refractarios y cerámicos y piezas muy finas sin abarquillarlas. Otra aplicación es la fabricación de alambres muy finos.
4.3
Descarga eléctrica
Este tipo de mecanización, conocida también como erosión por chispa, utiliza la energía eléctrica para eliminar material de la pieza sin necesidad de tocarla. Se aplica una corriente eléctrica intensa entre la punta del útil y la pieza, haciendo que salten chispas que vaporizan puntos pequeños de la pieza. Como no hay ninguna acción mecánica, se pueden realizar operaciones delicadas con piezas frágiles. Este método produce formas que no se pueden conseguir con procesos de mecanizado convencionales.

4.4
Electroquímica
La mecanización electroquímica emplea también la energía eléctrica para eliminar material. Se crea una celda electrolítica, utilizando el útil como cátodo y la pieza como ánodo y se aplica una corriente de intensidad elevada pero de bajo voltaje para disolver el metal y eliminarlo. La pieza debe ser de un material conductor. Con este tipo de mecanización son posibles muchas operaciones, como grabar, marcar, perforar y fresar.

4.5
Ultrasónica
La mecanización ultrasónica utiliza vibraciones de alta frecuencia y baja amplitud para crear orificios y otras cavidades. Se fabrica un útil relativamente blando con la forma deseada y se aplica contra la pieza con una vibración, utilizando un material abrasivo y agua. La fricción de las partículas abrasivas corta poco a poco la pieza. Este proceso permite mecanizar con facilidad aceros endurecidos, carburos, rubíes, cuarzo, diamantes y vidrio.

4.6
Haz de electrones
Este método de mecanización utiliza electrones acelerados a una velocidad equivalente a tres cuartas partes de la velocidad de la luz. El proceso se realiza en una cámara de vacío para reducir la expansión del haz de electrones a causa de los gases de la atmósfera. La corriente de electrones choca contra un área de la pieza delimitada con precisión. La energía cinética de los electrones se convierte en calor al chocar éstos contra la pieza, lo que hace que el material que se quiere eliminar se funda y se evapore, creando orificios o cortes. Los equipos de haz de electrones se suelen utilizar en electrónica para grabar circuitos de microprocesadores.

1 comentario:

Entradas populares

Me gusta

Seguidores