Robot




robot. (Del ingl. robot, y este del checo robota, trabajo, prestación personal). m. Máquina o ingenio electrónico programable, capaz de manipular objetos y realizar operaciones antes reservadas solo a las personas.

Wabot-2
En la exposición de Tokio, un inventor ejecuta una pieza con su robot, el Wabot-2. Resulta un verdadero desafío construir este tipo de robot, debido a que la destreza de la mano humana es la función más difícil de recrear mecánicamente. La precisión técnica de la ejecución del Wabot-2 es muy alta, por la calidad de sus componentes y el escáner electrónico que le sirve de ojo.
Michael Macintyre/Hutchison Library

Robot, máquina controlada por ordenador y programada para moverse, manipular objetos y realizar trabajos a la vez que interacciona con su entorno. Los robots son capaces de realizar tareas repetitivas de forma más rápida, barata y precisa que los seres humanos. El término procede de la palabra checa robota, que significa 'trabajo obligatorio'; fue empleado por primera vez en la obra teatral de 1921 R.U.R. (Robots Universales de Rossum) por el novelista y dramaturgo checo Karel Čapek. Desde entonces se ha empleado la palabra robot para referirse a una máquina que realiza trabajos para ayudar a las personas o efectúa tareas difíciles o desagradables para los humanos.
2
HISTORIA
El concepto de máquinas automatizadas se remonta a la antigüedad, con mitos de seres mecánicos vivientes. Los autómatas, o máquinas semejantes a personas, ya aparecían en los relojes de las iglesias medievales, y los relojeros del siglo XVIII eran famosos por sus ingeniosas criaturas mecánicas.
Algunos de los primeros robots empleaban mecanismos de realimentación para corregir errores, mecanismos que siguen empleándose actualmente. Un ejemplo de control por realimentación es un bebedero que emplea un flotador para determinar el nivel del agua. Cuando el agua cae por debajo de un nivel determinado, el flotador baja, abre una válvula y deja entrar más agua en el bebedero. Al subir el agua, el flotador también sube, y al llegar a cierta altura se cierra la válvula y se corta el paso del agua.
El primer auténtico controlador realimentado fue el regulador de Watt, inventado en 1788 por el ingeniero británico James Watt. Este dispositivo constaba de dos bolas metálicas unidas al eje motor de una máquina de vapor y conectadas con una válvula que regulaba el flujo de vapor. A medida que aumentaba la velocidad de la máquina de vapor, las bolas se alejaban del eje debido a la fuerza centrífuga, con lo que cerraban la válvula. Esto hacía que disminuyera el flujo de vapor a la máquina y por tanto la velocidad.
El control por realimentación, el desarrollo de herramientas especializadas y la división del trabajo en tareas más pequeñas que pudieran realizar obreros o máquinas fueron ingredientes esenciales en la automatización de las fábricas en el siglo XVIII. A medida que mejoraba la tecnología se desarrollaron máquinas especializadas para tareas como poner tapones a las botellas o verter caucho líquido en moldes para neumáticos. Sin embargo, ninguna de estas máquinas tenía la versatilidad del brazo humano, y no podían alcanzar objetos alejados y colocarlos en la posición deseada.
El desarrollo del brazo artificial multiarticulado, o manipulador, llevó al moderno robot. El inventor estadounidense George Devol desarrolló en 1954 un brazo primitivo que se podía programar para realizar tareas específicas. En 1975, el ingeniero mecánico estadounidense Victor Scheinman, cuando estudiaba la carrera en la Universidad de Stanford, en California, desarrolló un manipulador polivalente realmente flexible conocido como Brazo Manipulador Universal Programable (PUMA, siglas en inglés). El PUMA era capaz de mover un objeto y colocarlo en cualquier orientación en un lugar deseado que estuviera a su alcance. El concepto básico multiarticulado del PUMA es la base de la mayoría de los robots actuales.
3
CÓMO FUNCIONAN LOS ROBOTS
El diseño de un manipulador robótico se inspira en el brazo humano, aunque con algunas diferencias. Por ejemplo, un brazo robótico puede extenderse telescópicamente, es decir, deslizando unas secciones cilíndricas dentro de otras para alargar el brazo. También pueden construirse brazos robóticos de forma que puedan doblarse como la trompa de un elefante. Las pinzas están diseñadas para imitar la función y estructura de la mano humana. Muchos robots están equipados con pinzas especializadas para agarrar dispositivos concretos, como una gradilla de tubos de ensayo o un soldador de arco.
Las articulaciones de un brazo robótico suelen moverse mediante motores eléctricos. En la mayoría de los robots, la pinza se mueve de una posición a otra cambiando su orientación. Una computadora calcula los ángulos de articulación necesarios para llevar la pinza a la posición deseada, un proceso conocido como cinemática inversa.
Algunos brazos multiarticulados están equipados con servocontroladores, o controladores por realimentación, que reciben datos de un ordenador. Cada articulación del brazo tiene un dispositivo que mide su ángulo y envía ese dato al controlador. Si el ángulo real del brazo no es igual al ángulo calculado para la posición deseada, el servocontrolador mueve la articulación hasta que el ángulo del brazo coincida con el ángulo calculado. Los controladores y los ordenadores asociados también deben procesar los datos recogidos por cámaras que localizan los objetos que se van a agarrar o las informaciones de sensores situados en las pinzas que regulan la fuerza de agarre.
Cualquier robot diseñado para moverse en un entorno no estructurado o desconocido necesita múltiples sensores y controles (por ejemplo, sensores ultrasónicos o infrarrojos) para evitar los obstáculos. Los robots como los vehículos planetarios de la NASA necesitan una gran cantidad de sensores y unas computadoras de a bordo muy potentes para procesar la compleja información que les permite moverse. Eso es particularmente cierto para robots diseñados para trabajar en estrecha proximidad de seres humanos, como robots que ayuden a personas discapacitadas o sirvan comidas en un hospital. La seguridad debe ser esencial en el diseño de robots para el servicio humano.
4
USOS DE LOS ROBOTS
En 1995 funcionaban unos 700.000 robots en el mundo industrializado. Más de 500.000 se empleaban en Japón, unos 120.000 en Europa Occidental y unos 60.000 en Estados Unidos. Muchas aplicaciones de los robots corresponden a tareas peligrosas o desagradables para los humanos. En los laboratorios médicos, los robots manejan materiales que conlleven posibles riesgos, como muestras de sangre u orina. En otros casos, los robots se emplean en tareas repetitivas y monótonas en las que el rendimiento de una persona podría disminuir con el tiempo. Los robots pueden realizar estas operaciones repetitivas de alta precisión durante 24 horas al día sin cansarse. Uno de los principales usuarios de robots es la industria del automóvil. La empresa General Motors utiliza aproximadamente 16.000 robots para trabajos como soldadura por puntos, pintura, carga de máquinas, transferencia de piezas y montaje. El montaje es una de las aplicaciones industriales de la robótica que más está creciendo. Exige una mayor precisión que la soldadura o la pintura y emplea sistemas de sensores de bajo coste y computadoras potentes y baratas. Los robots se usan por ejemplo en el montaje de aparatos electrónicos, para montar microchips en placas de circuito.
Las actividades que entrañan gran peligro para las personas, como la localización de barcos hundidos, la búsqueda de depósitos minerales submarinos o la exploración de volcanes activos, son especialmente apropiadas para emplear robots. Los robots también pueden explorar planetas distantes. La sonda espacial no tripulada Galileo, de la NASA, viajó a Júpiter en 1996 y realizó tareas como la detección del contenido químico de la atmósfera joviana.
Ya se emplean robots para ayudar a los cirujanos a instalar caderas artificiales, y ciertos robots especializados de altísima precisión pueden ayudar en operaciones quirúrgicas delicadas en los ojos. La investigación en telecirugía emplea robots controlados de forma remota por cirujanos expertos; estos robots podrían algún día efectuar operaciones en campos de batalla distantes.
5
IMPACTO DE LOS ROBOTS
Los manipuladores robóticos crean productos manufacturados de mayor calidad y menor coste. Sin embargo, también pueden provocar la pérdida de empleos no cualificados, especialmente en cadenas de montaje industriales. Aunque crean trabajos en los sectores de soporte lógico y desarrollo de sensores, en la instalación y mantenimiento de robots y en la conversión de fábricas antiguas y el diseño de fábricas nuevas, estos nuevos empleos exigen mayores niveles de capacidad y formación. Las sociedades orientadas hacia la tecnología deben enfrentarse a la tarea de volver a formar a los trabajadores que pierden su empleo debido a la automatización y enseñarles nuevas capacidades para que puedan tener un puesto de trabajo en las industrias del siglo XXI.
6
TECNOLOGÍAS DEL FUTURO
Las máquinas automatizadas ayudarán cada vez más a los humanos en la fabricación de nuevos productos, el mantenimiento de las infraestructuras y el cuidado de hogares y empresas. Los robots podrán fabricar nuevas autopistas, construir estructuras de acero para edificios, limpiar conducciones subterráneas o cortar el césped. Ya existen prototipos que realizan todas esas tareas.
Una tendencia importante es el desarrollo de sistemas microelectromecánicos, cuyo tamaño va desde centímetros hasta milímetros. Estos robots minúsculos podrían emplearse para avanzar por vasos sanguíneos con el fin de suministrar medicamentos o eliminar bloqueos arteriales. También podrían trabajar en el interior de grandes máquinas para diagnosticar con antelación posibles problemas mecánicos.
Puede que los cambios más espectaculares en los robots del futuro provengan de su capacidad de razonamiento cada vez mayor. El campo de la inteligencia artificial está pasando rápidamente de los laboratorios universitarios a la aplicación práctica en la industria, y se están desarrollando máquinas capaces de realizar tareas cognitivas como la planificación estratégica o el aprendizaje por experiencia. El diagnóstico de fallos en aviones o satélites, el mando en un campo de batalla o el control de grandes fábricas correrán cada vez más a cargo de ordenadores inteligentes.

No hay comentarios:

Publicar un comentario

Entradas populares

Me gusta

Seguidores