Recopilación breve y sencilla de los inventos y descubrimientos más famosos que revolucionaron el mundo, la tecnología al servicio del hombre, desde la invención de la rueda hasta el rayo laser y los viajes espaciales, noticias de avances científicos, descubrimientos de los últimos tiempos. El desarrollo del hombre, la sociedad y el conocimiento humano.
Relacionar paralelogramos e igualdades vectoriales
Definimos los vectores a partir de traslaciones. Ya sabemos que las traslaciones se pueden definir usando paralelogramos. Por tanto, vectores y paralelogramos están relacionados. Pero, ¿cómo es esa relación?
I. Paralelogramos e igualdades vectoriales
1. Caracterizar un paralelogramo usando una igualdad vectorial
Si ABDC es un paralelogramo, entonces la traslación que transforma A en B también transforma C en D.
Además sabemos que si la traslación que transforma A en B también transforma C en D, entonces .
Estas dos propiedades nos permiten enunciar lo siguiente: si ABDC es un paralelogramo, entonces .
Recíprocamente, si , entonces ABDC es un paralelogramo.
Nota: el orden de los puntos C y D no es el mismo en el nombre del paralelogramo, ABDC, que en la igualdad vectorial, .
Caso especial: el paralelogramo ABDC se puede “aplanar”, lo que sucede cuando los puntos A, B, C y D están alineados.
En resumen: significa que ABDC es un paralelogramo (posiblemente aplanado).
2. Igualdades vectoriales obtenidas a partir de un paralelogramo
Sea un paralelogramo ABDC. A partir de él obtenemos la igualdad vectorial .
Pero este paralelogramo también podríamos nombrarlo así: ACDB, de donde obtendríamos la igualdad vectorial .
Si llamamos a este paralelogramo BACD, obtenemos la igualdad vectorial .
Si llamamos a este paralelogramo CABD, obtenemos la igualdad vectorial .
En resumen: un paralelogramo nos permite escribir cuatro igualdades vectoriales.
Consideremos las igualdades y . Los vectores tienen el mismo módulo y la misma dirección, aunque no el mismo sentido. Los llamamos vectores opuestos.
Cada igualdad de dos vectores nos permite escribir la igualdad de los vectores opuestos.
II. Igualdad vectorial y punto medio
En el apartado anterior hemos visto que si , entonces ABDC es un paralelogramo. Y sabemos que si un cuadrilátero ABDC es un paralelogramo, entonces sus diagonales AD y BC tienen el mismo punto medio. A partir de aquí podemos deducir la siguiente propiedad: si , entonces los segmentos AD y BC tienen el mismo punto medio.
Recíprocamente, si los segmentos AD y BC tienen el mismo punto medio, entonces ABDC es un paralelogramo y .
Publicado por
alma2061
en
12:50
Enviar por correo electrónicoEscribe un blogCompartir en XCompartir con FacebookCompartir en Pinterest
Etiquetas:
matematicas
martes, 9 de abril de 2013
Suscribirse a:
Enviar comentarios (Atom)
Entradas populares
-
r. f. Vigésima primera letra del abecedario español, y decimoctava del orden latino internacional, que por sí sola representa, en final de...
-
k. f. Duodécima letra del abecedario español, y undécima del orden latino internacional, que representa un fonema consonántico oclusivo, v...
-
m. f. Decimoquinta letra del abecedario español, y decimotercera del orden latino internacional, que representa un fonema consonántico nas...
-
t. f. Vigésima tercera letra del abecedario español, y vigésima del orden latino internacional, que representa un fonema consonántico oclu...
-
j. f. Undécima letra del abecedario español, y décima del orden latino internacional, que representa un fonema consonántico de articulació...
-
El invento de la educación indígena en América Latina Educación indígena en América Latina, educación impartida a las comunidades indíg...
-
Arte gótico Catedral de Notre Dame de París La catedral de Notre Dame está situada en la Île de la Cité, en el centro de París. Co...
-
El invento de Arte deTeotihuacán Avenida de los Muertos La Avenida de los Muertos o Miccaotli, nombre que recibió de los aztec...
-
g. f. Octava letra del abecedario español, y séptima del orden latino internacional, que representa, ante las vocales e, i , un fonema con...
-
COMO COMPRIMIR ARCHIVOS PDF. EN MÁS DE UNA OCASIÓN TENEMOS LA NECESIDAD DE ENVIAR ARCHIVOS PDF POR EMAIL, TAMBIEN NOS HEMOS DADO ...
No hay comentarios:
Publicar un comentario